Convection of a very viscous and non-heat-conductive fluid
Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 117-146

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic model of Oberbeck–Boussinesq convection is considered in the case when the heat conductivity $\delta$ is equal to zero and the viscosity $\mu=+\infty$. The global existence and uniqueness results are proved for the basic initial-boundary-value problem; both classical and generalized solutions are considered. It is shown that each solution approaches an equilibrium as $t\to\mp\infty$. Bibliography: 41 titles.
@article{SM_2007_198_1_a5,
     author = {V. I. Yudovich},
     title = {Convection of a very viscous and non-heat-conductive fluid},
     journal = {Sbornik. Mathematics},
     pages = {117--146},
     publisher = {mathdoc},
     volume = {198},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_1_a5/}
}
TY  - JOUR
AU  - V. I. Yudovich
TI  - Convection of a very viscous and non-heat-conductive fluid
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 117
EP  - 146
VL  - 198
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_1_a5/
LA  - en
ID  - SM_2007_198_1_a5
ER  - 
%0 Journal Article
%A V. I. Yudovich
%T Convection of a very viscous and non-heat-conductive fluid
%J Sbornik. Mathematics
%D 2007
%P 117-146
%V 198
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_1_a5/
%G en
%F SM_2007_198_1_a5
V. I. Yudovich. Convection of a very viscous and non-heat-conductive fluid. Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 117-146. http://geodesic.mathdoc.fr/item/SM_2007_198_1_a5/