Wavelets and spectral analysis
Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 97-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spectral theory of pseudodifferential operators on ultrametric spaces of general form is investigated with the use of the analysis of ultrametric wavelets. Bases of ultrametric wavelets are constructed on ultrametric spaces of analytic type; it is proved that bases of ultrametric wavelets are bases of eigenvectors for the introduced pseudodifferential operators and the corresponding eigenvalues are calculated. A generalization of the Vladimirov operator of $p$-adic fractional derivation is introduced for general ultrametric spaces. Bibliography: 32 titles.
@article{SM_2007_198_1_a4,
     author = {S. V. Kozyrev},
     title = {Wavelets and spectral analysis},
     journal = {Sbornik. Mathematics},
     pages = {97--116},
     year = {2007},
     volume = {198},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_1_a4/}
}
TY  - JOUR
AU  - S. V. Kozyrev
TI  - Wavelets and spectral analysis
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 97
EP  - 116
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_1_a4/
LA  - en
ID  - SM_2007_198_1_a4
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%T Wavelets and spectral analysis
%J Sbornik. Mathematics
%D 2007
%P 97-116
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2007_198_1_a4/
%G en
%F SM_2007_198_1_a4
S. V. Kozyrev. Wavelets and spectral analysis. Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 97-116. http://geodesic.mathdoc.fr/item/SM_2007_198_1_a4/

[1] V. C. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | Zbl

[2] V. C. Vladimirov, “O spektre nekotorykh psevdo-differentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2:6 (1990), 107–124 ; V. S. Vladimirov, “On the spectrum of some pseudodifferential operators over the field of $p$-adic numbers”, Leningrad Math. J., 2:6 (1991), 1261–1278 | MR | Zbl | Zbl

[3] A. Yu. Khrennikov, “Fundamentalnye resheniya nad polem $p$-adicheskikh chisel”, Algebra i analiz, 4:3 (1992), 248–266 ; A. Yu. Khrennikov, “Fundamental solutions over the field of $p$-adic numbers”, St. Petersburg Math. J., 4:3 (1993), 613–628 | MR | Zbl

[4] S. Albeverio, W. Karwowski, “A random walk on $p$-adic numbers,”, Stochastic Process–Physics and Geometry II (Proc. Locarno, 1991), eds. S. Albeverio, U. Cattaneo, D. Merlini, World Scientific, Singapore, 1995, 61–74 | MR | Zbl

[5] A. N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedean fields, Dekker, New York, 2001 | MR | Zbl

[6] A. N. Kochubei, “Fundamentalnye resheniya psevdodifferentsialnykh uravnenii, svyazannykh s $p$-adicheskimi kvadratichnymi formami”, Izv. RAN. Ser. matem., 62:6 (1998), 103–124 | MR | Zbl

[7] S. V. Kozyrev, “Analiz vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. matem., 66:2 (2002), 149–158 ; S. V. Kozyrev, “Wavelet analysis as $p$-adic spectral analysis”, Izv. Math., 66:2 (2002), 367–376 ; arXiv: math-ph/0012019 | MR | Zbl | DOI

[8] S. V. Kozyrev, “$p$-adicheskie psevdodifferentsialnye operatory i $p$-adicheskie vspleski”, TMF, 138:3 (2004), 383–394 ; S. V. Kozyrev, “$p$-Adic pseudodifferential operators and $p$-adic wavelets”, Theoret. and Math. Phys., 138:3 (2004), 322–332 ; arXiv: math-ph/0303045 | MR | DOI

[9] S. V. Kozyrev, “$p$-adicheskie psevdodifferentsialnye operatory: metody i prilozheniya”, Izbrannye voprosy $p$-adicheskoi matematicheskoi fiziki i analiza, K 80-letiyu so dnya rozhdeniya akad. V. S. Vladimirova, Tr. MIAN, 245, M., Nauka, 2004, 154–165 | MR

[10] S. V. Kozyrev, V. Al. Osipov, V. A. Avetisov, “Nondegenerate ultrametric diffusion”, J. Math. Phys., 46:6 (2005) ; arXiv: cond-mat/0403440 | DOI | MR | Zbl

[11] J. J. Benedetto, R. L. Benedetto, “A wavelet theory for local fields and related groups”, J. Geom. Anal., 14:3 (2004), 423–456 | MR | Zbl

[12] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, M., Nauka, 1987 ; B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl., 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | Zbl | MR | Zbl

[13] B. I. Golubov, “O modifitsirovannom silnom dvoichnom integrale i proizvodnoi”, Matem. sb., 193:4 (2002), 37–60 | MR | Zbl

[14] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, AFTs, M., 1999 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[15] S. V. Kozyrev, A. Yu. Khrennikov, “Psevdodifferentsialnye operatory na ultrametricheskikh prostranstvakh i ultrametricheskie vspleski”, Izv. RAN. Cer. matem., 69:5 (2005), 133–148 ; S. V. Kozyrev, A. Yu. Khrennikov, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets”, Izv. Math., 69:5 (2005), 989–1003 ; arXiv: math-ph/0412062 | MR | Zbl | DOI

[16] A. Yu. Khrennikov, S. V. Kozyrev, “Wavelets on ultrametric spaces”, Appl. Comput. Harmon. Anal., 19 (2005), 61–76 | DOI | MR | Zbl

[17] A. J. Lemin, “The category of ultrametric spaces is isomorpic to the category of complete, atomic, tree-like and real graduated lattices LAT”, Algebra Universalis, 50:1 (2003), 35–49 | DOI | MR | Zbl

[18] A. Khrennikov, Classical and quantum mental models and Freud's theory of unconscious mind, Växjö Univ. Press, Växjö, 2002

[19] F. Bruhat, J. Tits, “Groupes réductifs sur un corps local”, Inst. Hautes Études Sci. Publ. Math., 41 (1972), 5–251 | DOI | MR | Zbl

[20] F. Bruhat, J. Tits, “Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée”, Inst. Hautes Études Sci. Publ. Math., 60 (1984), 197–376 | DOI | MR | Zbl

[21] J. P. Serre, Trees, Springer-Verlag, New York, 1980 | MR | Zbl

[22] J. M. Cohen, F. Colonna, D. Singman, “Distributions and measures on the boundary of a tree”, J. Math. Anal. Appl., 293 (2004), 89–107 | DOI | MR | Zbl

[23] F. Choucroun, “Arbres, espaces ultrametriques et bases de structure uniforme”, Geom. Dedicata, 53 (1994), 69–74 | DOI | MR | Zbl

[24] I. V. Volovich, “$p$-Adic string”, Classical Quantum Gravity, 4:4 (1987), 83–87 | DOI | MR

[25] I. Ya. Aref'eva, B. Dragovic, P. Frampton, I. V. Volovich, “Wave function of the universe and $p$-adic gravity”, Modern Phys. Lett. A, 6 (1991), 4341–4358 | MR | Zbl

[26] A. Yu. Khrennikov, Nearkhimedov analiz i ego prilozheniya, Nauka, Fizmatlit, M., 2003 | MR | Zbl

[27] A. Khrennikov, “$p$-Adic discrete dynamical systems and their applications in physics and cognitive sciences”, Russ. J. Math. Phys., 11:1 (2004), 45–70 | MR | Zbl

[28] A. Yu. Khrennikov, M. Nilsson, $p$-Adic deterministic and random dynamics, Math. Appl., Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl

[29] V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, “Application of $p$-adic analysis to models of spontaneous breaking of the replica symmetry”, J. Phys. A, 32:50 (1999), 8785–8791 ; arXiv: cond-mat/9904360 | DOI | MR | Zbl

[30] G. Parisi, N. Sourlas, “$p$-Adic numbers and replica symmetry breaking”, European Phys. J. B, 14:3 (2000), 535–542 ; arXiv: cond-mat/9906095 | DOI | MR

[31] V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A, 35:2 (2002), 177–189 ; arXiv: cond-mat/0106506 | DOI | MR | Zbl

[32] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, M., Nauka, 1989 ; | MR | Zbl