Wavelets and spectral analysis
Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 97-116

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral theory of pseudodifferential operators on ultrametric spaces of general form is investigated with the use of the analysis of ultrametric wavelets. Bases of ultrametric wavelets are constructed on ultrametric spaces of analytic type; it is proved that bases of ultrametric wavelets are bases of eigenvectors for the introduced pseudodifferential operators and the corresponding eigenvalues are calculated. A generalization of the Vladimirov operator of $p$-adic fractional derivation is introduced for general ultrametric spaces. Bibliography: 32 titles.
@article{SM_2007_198_1_a4,
     author = {S. V. Kozyrev},
     title = {Wavelets and spectral analysis},
     journal = {Sbornik. Mathematics},
     pages = {97--116},
     publisher = {mathdoc},
     volume = {198},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_1_a4/}
}
TY  - JOUR
AU  - S. V. Kozyrev
TI  - Wavelets and spectral analysis
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 97
EP  - 116
VL  - 198
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_1_a4/
LA  - en
ID  - SM_2007_198_1_a4
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%T Wavelets and spectral analysis
%J Sbornik. Mathematics
%D 2007
%P 97-116
%V 198
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_1_a4/
%G en
%F SM_2007_198_1_a4
S. V. Kozyrev. Wavelets and spectral analysis. Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 97-116. http://geodesic.mathdoc.fr/item/SM_2007_198_1_a4/