Uniqueness classes for solutions in unbounded domains of the first mixed problem for the
Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 55-96

Voir la notice de l'article provenant de la source Math-Net.Ru

In a cylindrical domain $D^T=(0,T)\times\Omega$, where $\Omega$ is an unbounded subdomain of $\mathbb R_{n+1}$, one considers the evolution equation $u_t=Lu$ the right-hand side of which is a quasi-elliptic operator with highest derivatives of orders $2k,2m_1,\dots,2m_n$ with respect to the variables $y_0,y_1,\dots,y_n$. For the mixed problem with Dirichlet condition at the lateral part of the boundary of $D^T$ a uniqueness class of the Täcklind type is described. For domains $\Omega$ tapering at infinity another uniqueness class is distinguished, a geometric one, which is broader than the Täcklind-type class. It is shown that for domains with irregular behaviour of the boundary this class is wider than the one described for a second-order parabolic equation by Oleǐnik and Iosif'yan (Uspekhi Mat. Nauk, 1976 [17]). In a wide class of tapering domains non-uniqueness examples for solutions of the first mixed problem for the heat equation are constructed, which supports the exactness of the geometric uniqueness class. Bibliography: 33 titles.
@article{SM_2007_198_1_a3,
     author = {L. M. Kozhevnikova},
     title = {Uniqueness classes for solutions in unbounded domains of the first mixed problem for the},
     journal = {Sbornik. Mathematics},
     pages = {55--96},
     publisher = {mathdoc},
     volume = {198},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_1_a3/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - Uniqueness classes for solutions in unbounded domains of the first mixed problem for the
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 55
EP  - 96
VL  - 198
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_1_a3/
LA  - en
ID  - SM_2007_198_1_a3
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T Uniqueness classes for solutions in unbounded domains of the first mixed problem for the
%J Sbornik. Mathematics
%D 2007
%P 55-96
%V 198
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_1_a3/
%G en
%F SM_2007_198_1_a3
L. M. Kozhevnikova. Uniqueness classes for solutions in unbounded domains of the first mixed problem for the. Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 55-96. http://geodesic.mathdoc.fr/item/SM_2007_198_1_a3/