Relations between several problems of estimating convex
Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 39-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finite-dimensional problems of finding outer, inner, and uniform estimates for a convex compactum by a ball in an arbitrary norm are considered and compared, as well as the problem of finding estimates of the boundary of a convex compactum by a spherical annulus of the smallest width. It is shown that these problems can be linked by means of the parametric problem of finding the best approximation in the Hausdorff metric of the compactum under consideration by a ball of fixed radius. One can indicate ranges of the fixed radius in which solutions of the latter problem give solutions of the problems mentioned above. However, for some values of the radius this latter problem can be independent. Bibliography: 12 titles.
@article{SM_2007_198_1_a2,
     author = {S. I. Dudov},
     title = {Relations between several problems of estimating convex},
     journal = {Sbornik. Mathematics},
     pages = {39--53},
     year = {2007},
     volume = {198},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_1_a2/}
}
TY  - JOUR
AU  - S. I. Dudov
TI  - Relations between several problems of estimating convex
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 39
EP  - 53
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_1_a2/
LA  - en
ID  - SM_2007_198_1_a2
ER  - 
%0 Journal Article
%A S. I. Dudov
%T Relations between several problems of estimating convex
%J Sbornik. Mathematics
%D 2007
%P 39-53
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2007_198_1_a2/
%G en
%F SM_2007_198_1_a2
S. I. Dudov. Relations between several problems of estimating convex. Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 39-53. http://geodesic.mathdoc.fr/item/SM_2007_198_1_a2/

[1] T. Bonnezen, V. Fenkhel, Teoriya vypuklykh tel, Fazis, M., 2002; T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Springer-Verlag, Berlin–Heidelberg–New York, 1974 | MR | Zbl | Zbl

[2] B. N. Pshenichnyi, Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl

[3] S. I. Dudov, “Vnutrennyaya otsenka vypuklogo mnozhestva telom normy”, ZhVM i MF, 36:5 (1996), 153–159 | MR | Zbl

[4] S. I. Dudov, “Ob otsenke granitsy vypuklogo kompakta sharovym sloem”, Izv. Saratovskogo un-ta, 1:2 (2001), 64–75

[5] M. S. Nikolskii, D. B. Silin, “O nailuchshem priblizhenii vypuklogo kompakta elementami addiala”, Optimalnoe upravlenie i differentsialnye uravneniya, K 70-letiyu so dnya rozhdeniya akad. E. F. Mischenko, Tr. MIAN, 211, Nauka, Fizmatlit, M., 1995, 338–354 | MR

[6] S. I. Dudov, I. V. Zlatorunskaya, “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Matem. sb., 191:10 (2000), 13–38 | MR | Zbl

[7] V. F. Demyanov, L. V. Vasilev, Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 ; V. F. Dem'yanov, L. V. Vasil'ev, Nondifferentiable optimization, Optimization Software, Inc., Publications Division, New York, 1985 | MR | Zbl | MR | Zbl

[8] S. I. Dudov, “Subdifferentsiruemost i superdifferentsiruemost funktsii rasstoyaniya”, Matem. zametki, 61:4 (1997), 530–542 | MR | Zbl

[9] M. D'Ocagne, “Sur certaine figures minimales”, Bull. Soc. Math. France, 12 (1884), 168–177 | MR

[10] H. Lebesgue, “Sur quelques questions de minimum, relatives and courbes orbiformes, et sur leurs rapports avec le calcul des variations”, J. Math. (8), 4 (1921), 67–96 | Zbl

[11] I. Barany, “On the minimal ring containing the boundary of convex body”, Acta Sci. Math. (Szeged), 52:1–2 (1988), 93–100 | MR | Zbl

[12] S. I. Dudov, I. V. Zlatorunskaya, “Best approximation of a compact set by a ball in an arbitrary norm”, Adv. Math. Res., 2 (2003), 81–114 | MR | Zbl