Generic phase transitions and profit singularities in Arnol'd's model
Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 17-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a smooth one-parameter family of pairs of control systems and profit densities on a circle, the generic transitions between optimal rotations and stationary strategies are studied in the problem of maximization of the time-averaged profit on the infinite horizon. It is shown that there are only two types of such transitions, the corresponding singularities of the average profit as a function of the family parameter are found, and it is proved that these singularities are stable under small perturbations of a generic family. The classification of singularities of the maximum average profit is completed for generic families. Bibliography: 16 titles.
@article{SM_2007_198_1_a1,
     author = {A. A. Davydov and H. Mena Matos},
     title = {Generic phase transitions and profit singularities in {Arnol'd's} model},
     journal = {Sbornik. Mathematics},
     pages = {17--37},
     year = {2007},
     volume = {198},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_1_a1/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - H. Mena Matos
TI  - Generic phase transitions and profit singularities in Arnol'd's model
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 17
EP  - 37
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_1_a1/
LA  - en
ID  - SM_2007_198_1_a1
ER  - 
%0 Journal Article
%A A. A. Davydov
%A H. Mena Matos
%T Generic phase transitions and profit singularities in Arnol'd's model
%J Sbornik. Mathematics
%D 2007
%P 17-37
%V 198
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2007_198_1_a1/
%G en
%F SM_2007_198_1_a1
A. A. Davydov; H. Mena Matos. Generic phase transitions and profit singularities in Arnol'd's model. Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 17-37. http://geodesic.mathdoc.fr/item/SM_2007_198_1_a1/

[1] A. A. Zevin, “O nekotorykh osobennostyakh optimalnykh tsiklicheskikh traektorii”, Avtomatika i telemekhanika, 1980, no. 3, 20–25 | MR | Zbl

[2] H. Maurer, Ch. Büskens, G. Feichtinger, “Solution techniques for periodic control problems: a case study in producting planning”, Optimal Control Appl. Methods, 19 (1998), 185–203 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[3] A. M. Tsirlin, Metody usrednennoi optimizatsii i ikh prilozheniya, Nauka, Fizmatlit, M., 1997 | MR | Zbl

[4] V. I. Arnold, “Vypuklye obolochki i povyshenie proizvoditelnosti sistem pri pulsiruyuschei zagruzke”, Sib. matem. zhurn., 28:4 (1987), 29–31 | MR | Zbl

[5] V. I. Arnold, “Optimizatsiya v srednem i fazovye perekhody v upravlyaemykh dinamicheskikh sistemakh”, Funkts. analiz i ego pril., 36:2 (2002), 1–11 | MR

[6] V. I. Arnol'd, “On a variational problem connected with phase transitions of means in controllable dynamical systems”, Nonlinear problems in mathematical physics and related topics I, Int. Math. Ser. (N.Y.), 1, Kluwer Acad. Publ., New York, 2002, 23–34 | MR | Zbl

[7] A. A. Davydov, “Osobennosti tipichnoi vygody v modeli Arnolda tsiklicheskikh protsessov”, Differentsialnye uravneniya i dinamicheskie sistemy, Tr. MIAN, 250, Nauka, M., 2005, 79–94 | MR | Zbl

[8] A. A. Davydov, “Tipichnye osobennosti skorostei optimalnykh strategii odnoparametricheskikh tsiklicheskikh protsessov”, Chebyshëvskii sb., 5:1(9) (2004), 87–94 | MR

[9] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, t. 1, Nauka, M., 1982 ; V. I. Arnol'd, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differentiable maps, vol. I, Monogr. Math., 82, Birkhäuser, Boston, 1985 | MR | Zbl | MR | Zbl

[10] L. N. Bryzgalova, “Osobennosti maksimuma funktsii, zavisyaschei ot parametrov”, Funkts. analiz i ego pril., 11:1 (1977), 59–60 | MR | Zbl

[11] L. N. Bryzgalova, “O funktsiyakh maksimuma semeistva funktsii, zavisyaschikh ot parametrov”, Funkts. analiz i ego pril., 12:1 (1978), 66–67 | MR | Zbl

[12] A. A. Davydov, “Singularities of the maximum function over the preimage”, Geometry in nonlinear control and differential inclusions, Banach Center Publ., 32, Polish Acad. Sci., Warsaw, 1995, 167–181 | MR | Zbl

[13] C. Moreira, Singularidades do proveito medio optimo para estrategias estacionarias, Universidade do Porto, 2005

[14] A. A. Davydov, V. M. Zakalyukin, “Sovpadenie tipichnykh osobennostei reshenii ekstremalnykh zadach s ogranicheniyami”, Geometricheskaya teoriya upravleniya, Itogi nauki i tekhniki. Sovrem. matem. i ee pril. Tematicheskie obzory, 64, 1999, 118–143 | MR | Zbl

[15] H. Th. Jongen, P. Jonker, E. Twilt, “Critical sets in parametric optimization”, Math. Program., 34 (1986), 333–353 | DOI | MR | Zbl

[16] V. I. Arnold (red.), Dinamicheskie sistemy – 5, Sovrem. problemy matem. Fundam. napr., VINITI, M., 1986 ; V. I. Arnol'd (ed.), Bifurcation theory and catastrophe theory, Dynamical systems V, Encyclopaedia Math. Sci., Springer-Verlag, Berlin, 1994 | MR | Zbl