@article{SM_2007_198_1_a0,
author = {I. I. Bogdanov and A. \`E. Guterman},
title = {Monotone matrix transformations defined},
journal = {Sbornik. Mathematics},
pages = {1--16},
year = {2007},
volume = {198},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_1_a0/}
}
I. I. Bogdanov; A. È. Guterman. Monotone matrix transformations defined. Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SM_2007_198_1_a0/
[1] M. J. Englefield, “The commuting inverses of a square matrix”, Proc. Cambridge Philos. Soc., 62 (1966), 667–671 | DOI | MR | Zbl
[2] S. K. Mitra, “A new class of $g$-inverse of square matrices”, Sankhyā Ser. A, 30 (1968), 323–330 | MR | Zbl
[3] S. K. Mitra, “On group inverses and the sharp order”, Linear Algebra Appl., 92 (1987), 17–37 | DOI | MR | Zbl
[4] P. Robert, “On the group-inverse of a linear transformation”, J. Math. Anal. Appl., 22 (1968), 658–669 | DOI | MR | Zbl
[5] I. Erdelyi, “On the matrix equation $Ax=\lambda Bx$”, J. Math. Anal. Appl., 17 (1967), 117–132 | DOI | MR | Zbl
[6] A. Ben-Israel, T. Greville, Generalized inverses: theory and applications, Wiley, New York, 1974 | MR | Zbl
[7] C. R. Rao, S. K. Mitra, Generalized inverse of matrices and its applications, Wiley, New York, 1971 | MR | Zbl
[8] R. E. Hartwig, “How to partially order regular elements”, Math. Japon., 25:1 (1980), 1–13 | MR | Zbl
[9] K. S. S. Nambooripad, “The natural partial order on a regular semigroup”, Proc. Edinb. Math. Soc. (2), 23 (1980), 249–260 | DOI | MR | Zbl
[10] M. P. Drazin, “Natural structures on semigroups with involution”, Bull. Amer. Math. Soc., 84:1 (1978), 139–141 | DOI | MR | Zbl
[11] S. K. Mitra, “Matrix partial orders through generalized inverses: Unified theory”, Linear Algebra Appl., 148 (1991), 237–263 | DOI | MR | Zbl
[12] S. K. Mitra, “The minus partial order and the shorted matrix”, Linear Algebra Appl., 83 (1986), 1–27 | DOI | MR | Zbl
[13] J. K. Baksalary, F. Pukelsheim, G. P. H. Styan, “Some properties of matrix partial orderings”, Linear Algebra Appl., 119 (1989), 57–85 | DOI | MR | Zbl
[14] J. K. Baksalary, J. Hauke, “A further algebraic version of Cochran's theorem and matrix partial orderings”, Linear Algebra Appl., 127 (1990), 157–169 | DOI | MR | Zbl
[15] S. K. Mitra, R. E. Hartwig, “Partial orders based on outer inverses”, Linear Algebra Appl., 176 (1992), 3–20 | DOI | MR | Zbl
[16] G. Frobenius, “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen”, Sitzungsber. Preuss. Akad. Wiss. Berlin, 1897, 994–1015 ; G. Frobenius, Teoriya kharakterov i predstavlenii grupp, GNTI Ukrainy, Kharkov, 1937, 106–127 | Zbl
[17] A. E. Guterman, A. V. Mikhalev, “Obschaya algebra i lineinye otobrazheniya, sokhranyayuschie matrichnye invarianty”, Fundam. prikl. matem., 9:1 (2003), 83–101 ; A. E. Guterman, A. V. Mikhalev, “General algebra and linear transformations preserving matrix invariants”, J. Math. Sci., 128:6 (2005), 3384–3395 | MR | Zbl | DOI
[18] C.-K. Li, N.-K. Tsing, “Linear preserver problems: A brief introduction and some special techniques”, Linear Algebra Appl., 162–164 (1992), 217–235 | DOI | MR | Zbl
[19] P. Pierce and others, “A survey of linear preserver problems”, Linear Multilinear Algebra, 33 (1992), 1–119
[20] J. de Pillis, “Linear transformations which preserve Hermitian and positive semidefinite operators”, Pacific J. Math., 23 (1967), 129–137 | MR | Zbl
[21] A. A. Alieva, A. E. Guterman, “Monotone linear transformations on matrices are invertible”, Comm. Algebra, 33:9 (2005), 3335–3352 | DOI | MR | Zbl
[22] A. Guterman, “Linear preservers for Drazin star partial order”, Comm. Algebra, 29:9 (2001), 3905–3917 | DOI | MR | Zbl
[23] A. Guterman, “Linear preservers for matrix inequalities and partial orderings”, Linear Algebra Appl., 331:1–3 (2001), 75–87 | DOI | MR | Zbl
[24] A. Guterman, “Monotone matrix maps preserve non-maximal rank”, Polynomial identities and combinatorial methods, Lect. Notes Pure Appl. Math., 235, Dekker, New York, 2003, 311–328 | MR | Zbl
[25] M. Omladič P. Šemrl, “Preserving diagonalisability”, Linear Algebra Appl., 285:1–3 (1998), 165–179 | DOI | MR | Zbl
[26] T. S. Motzkin, O. Taussky, “Pairs of matrices with property $L$”, Trans. Amer. Math. Soc., 73 (1952), 108–114 | DOI | MR | Zbl
[27] T. S. Motzkin, O. Taussky, “Pairs of matrices with property $L$. II”, Trans. Amer. Math. Soc., 80 (1955), 387–401 | DOI | MR | Zbl
[28] A. I. Maltsev, Osnovy lineinoi algebry, 3 izd., Nauka, M., 1975 ; A. I. Mal'cev, Foundations of linear algebra, Freeman, San Francisco, 1963 | MR | MR