Monotone matrix transformations defined
Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 1-16

Voir la notice de l'article provenant de la source Math-Net.Ru

Bijective linear transformations of the matrix algebra over an arbitrary field that preserve simultaneous diagonalizability are characterized. This result is used for the characterization of bijective linear transformations monotone with respect to the $\stackrel{\sharp}$- and $\stackrel{\mathrm{cn}}$-orders. Bibliography: 28 titles.
@article{SM_2007_198_1_a0,
     author = {I. I. Bogdanov and A. \`E. Guterman},
     title = {Monotone matrix transformations defined},
     journal = {Sbornik. Mathematics},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {198},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_1_a0/}
}
TY  - JOUR
AU  - I. I. Bogdanov
AU  - A. È. Guterman
TI  - Monotone matrix transformations defined
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1
EP  - 16
VL  - 198
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_1_a0/
LA  - en
ID  - SM_2007_198_1_a0
ER  - 
%0 Journal Article
%A I. I. Bogdanov
%A A. È. Guterman
%T Monotone matrix transformations defined
%J Sbornik. Mathematics
%D 2007
%P 1-16
%V 198
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_1_a0/
%G en
%F SM_2007_198_1_a0
I. I. Bogdanov; A. È. Guterman. Monotone matrix transformations defined. Sbornik. Mathematics, Tome 198 (2007) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SM_2007_198_1_a0/