Examples of sets with large trigonometric sums
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1805-1838 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be a subset of $\mathbb Z/N\mathbb Z$, and let $R$ be a set of large Fourier coefficients of the set $A$. The question on the structure of $R$ is related to inverse problems of additive number theory. Properties of $R$ were studied by Chang, Green, and this author. The present paper is concerned with new results on sets of large Fourier coefficients. In addition, examples demonstrating the definitive character of earlier results are presented. Bibliography: 27 titles.
@article{SM_2007_198_12_a5,
     author = {I. D. Shkredov},
     title = {Examples of sets with large trigonometric sums},
     journal = {Sbornik. Mathematics},
     pages = {1805--1838},
     year = {2007},
     volume = {198},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a5/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - Examples of sets with large trigonometric sums
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1805
EP  - 1838
VL  - 198
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_12_a5/
LA  - en
ID  - SM_2007_198_12_a5
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T Examples of sets with large trigonometric sums
%J Sbornik. Mathematics
%D 2007
%P 1805-1838
%V 198
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2007_198_12_a5/
%G en
%F SM_2007_198_12_a5
I. D. Shkredov. Examples of sets with large trigonometric sums. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1805-1838. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a5/

[1] W. T. Gowers, “Rough structure and classification”, GAFA, Special Volume – GAFA2000 “Visions in Mathematics” (Tel Aviv, 1999), Part I, 79–117 | MR | Zbl

[2] M. B. Nathanson, Additive number theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math., Springer-Verlag, New York, 165 | MR | Zbl

[3] M.-C. Chang, “A polynomial bound in Freiman's theorem”, Duke Math. J., 113:3 (2002), 399–419 | DOI | MR | Zbl

[4] I. Z. Ruzsa, “Generalized arithmetical progressions and sumsets”, Acta Math. Hungar., 65:4 (1994), 379–388 | DOI | MR | Zbl

[5] Yu. Bilu, “Structure of sets with small sumset”, Structure theory of set addition, Asté risque, 258, Soc. Math. France, Paris, 1999, 77–108 | MR | Zbl

[6] G. A. Freiman, Foundations of a structural theory of set addition, Transl. Math. Monogr., 37, Providence, RI, Amer. Math. Soc., 1973 | MR | MR | Zbl | Zbl

[7] B. Green, “Arithmetic progressions in sumsets”, Geom. Funct. Anal., 12:3 (2002), 584–597 | DOI | MR | Zbl

[8] T. Schoen, “Linear equations in $\mathbb Z_p$”, Bull. London Math. Soc., 37:4 (2005), 495–501 | DOI | MR | Zbl

[9] A. A. Yudin, “Teoriya chisel”, Teoretiko-chislovye issledovaniya po spektru Markova i strukturnoi teorii slozheniya mnozhestv, eds. G. A. Freiman, A. M. Rubinov, E. V. Novoselov, Izd-vo KGU, M., 1973, 163–174 | MR

[10] A. Besser, “Sets of integers with large trigonometric sums”, Structure theory of set addition, Astérisque, 258, Soc. Math. France, Paris, 1999, 35–76 | MR | Zbl

[11] V. F. Lev, “Linear equations over $\mathbb F_p$ and moments of exponential sums”, Duke Math. J., 107:2 (2001), 239–263 | DOI | MR | Zbl

[12] S. V. Konyagin, V. F. Lev, “On the distribution of exponential sums”, Integers, 2000, no. A1, electronic only | MR | Zbl

[13] B. Green, “Some constructions in the inverse spectral theory of cyclic groups”, Combin. Probab. Comput., 12:2 (2003), 127–138 | DOI | MR | Zbl

[14] I. D. Shkredov, “On sets of large exponential sums”, Russian Acad. Sci. Dokl. Math., 74:3 (2006), 860–864 | DOI | MR

[15] I. D. Shkredov, “O mnozhestvakh bolshikh trigonometricheskikh summ”, Izv. RAN. Ser. matem. (to appear)

[16] W. Rudin, Fourier analysis on groups, Wiley Classics Lib., Wiley, New York, 1990 | MR | Zbl

[17] B. Green, “A Szemerédi-type regularity lemma in Abelian groups, with applications”, Geom. Funct. Anal., 15:2 (2005), 340–376 | DOI | MR | Zbl

[18] J. Bourgain, “On triples in arithmetic progression”, Geom. Funct. Anal., 9:5 (1999), 968–984 | DOI | MR | Zbl

[19] B. Green, “Finite field models in additive combinatorics”, Surveys in combinatorics 2005, Papers from the 20th British combinatorial conference (Durham, UK, 2005), London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 1–27 | MR | Zbl

[20] K. de Leeuw, Y. Katznelson, J.-P. Kahane, “Sur les coefficients de Fourier des fonctions continues”, C. R. Acad. Sci. Paris Sér. A-B, 285:16 (1977), 1001–1003 | MR | Zbl

[21] F. L. Nazarov, “The Bang solution of the coefficient problem”, St. Petersbg. Math. J., 9:2 (1998), 407–419 | MR | Zbl

[22] K. Ball, “Convex geometry and functional analysis”, Handbook of the geometry of Banach spaces. Vol. I, Elsevier, North-Holland, Amsterdam, 2001, 161–194 | MR | Zbl

[23] J. Spencer, “Six standard deviations suffice”, Trans. Amer. Math. Soc., 289:2 (1985), 679–706 | DOI | MR | Zbl

[24] B. Green, “Structure theory of set addition”, ICMS Instructional Conference in Combinatorial Aspects of Mathematical Analysis (Edinburgh, 2002), 2002

[25] I. Z. Ruzsa, “Arithmetic progressions in sumsets”, Acta Arith., 60:2 (1991–1992), 191–202 | MR | Zbl

[26] B. Bajnok, I. Ruzsa, “The independence number of a subset of an Abelian group”, Integers, 3:A2 (2003), electronic only | MR | Zbl

[27] S. Bernstein, “Sur une modification de l'inéqualité de Tchebichef ”, Annal. Sci. Inst. Sav. Ukr. Sect. Math. I, 1924, 38–49 | Zbl