Examples of sets with large trigonometric sums
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1805-1838

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a subset of $\mathbb Z/N\mathbb Z$, and let $R$ be a set of large Fourier coefficients of the set $A$. The question on the structure of $R$ is related to inverse problems of additive number theory. Properties of $R$ were studied by Chang, Green, and this author. The present paper is concerned with new results on sets of large Fourier coefficients. In addition, examples demonstrating the definitive character of earlier results are presented. Bibliography: 27 titles.
@article{SM_2007_198_12_a5,
     author = {I. D. Shkredov},
     title = {Examples of sets with large trigonometric sums},
     journal = {Sbornik. Mathematics},
     pages = {1805--1838},
     publisher = {mathdoc},
     volume = {198},
     number = {12},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a5/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - Examples of sets with large trigonometric sums
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1805
EP  - 1838
VL  - 198
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_12_a5/
LA  - en
ID  - SM_2007_198_12_a5
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T Examples of sets with large trigonometric sums
%J Sbornik. Mathematics
%D 2007
%P 1805-1838
%V 198
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_12_a5/
%G en
%F SM_2007_198_12_a5
I. D. Shkredov. Examples of sets with large trigonometric sums. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1805-1838. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a5/