Asymptotic distribution of resonances for one-dimensional
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1787-1804 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic distribution of the resonances of the Schrödinger operator, that is, the poles of the analytic continuation of the kernel of its resolvent, is under investigation. Under the assumption that the potential has compact support it is shown that the system of resonances consists of two series, located close to logarithmic curves with parameters determined by the length of the support of the potential and the orders of the zeros at its end-points. The main theorem complements and refines known results; namely, it allows the analysis of complex-valued potentials with zeros of arbitrary (not necessarily integer) tangency orders at the end-points of the support and the derivation of asymptotic formulae for such potentials with qualified estimates of the remainder term. Bibliography: 11 titles.
@article{SM_2007_198_12_a4,
     author = {S. A. Stepin and A. G. Tarasov},
     title = {Asymptotic distribution of resonances for one-dimensional},
     journal = {Sbornik. Mathematics},
     pages = {1787--1804},
     year = {2007},
     volume = {198},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a4/}
}
TY  - JOUR
AU  - S. A. Stepin
AU  - A. G. Tarasov
TI  - Asymptotic distribution of resonances for one-dimensional
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1787
EP  - 1804
VL  - 198
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_12_a4/
LA  - en
ID  - SM_2007_198_12_a4
ER  - 
%0 Journal Article
%A S. A. Stepin
%A A. G. Tarasov
%T Asymptotic distribution of resonances for one-dimensional
%J Sbornik. Mathematics
%D 2007
%P 1787-1804
%V 198
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2007_198_12_a4/
%G en
%F SM_2007_198_12_a4
S. A. Stepin; A. G. Tarasov. Asymptotic distribution of resonances for one-dimensional. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1787-1804. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a4/

[1] V. de Alfaro, T. Regge, Potential scattering, North-Holland, Amsterdam; Wiley, New York, 1965 | MR | Zbl | Zbl

[2] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativiskoi kvantovoi mekhanike, Nauka, M., 1971 | Zbl

[3] M. Reed, B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York–London, 1978 | MR | MR | Zbl | Zbl

[4] R. B. Melrose, Geometric scattering theory, Stanford Lectures, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[5] M. Zworski, “Counting scattering poles”, Spectral and scattering theory, Proceedings of the Taniguchi international workshop (Sanda, Japan, 1992), Lecture Notes in Pure and Appl. Math., 161, Dekker, New York, 1994, 301–331 | MR | Zbl

[6] J. Sjöstrand, “A trace formula and review of some estimates for resonances”, Microlocal analysis and spectral theory (Lucca, Italy, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997, 377–437 | MR | Zbl

[7] M. Zworski, “Distribution of poles for scattering on the real line”, J. Funct. Anal., 73:2 (1987), 277–296 | DOI | MR | Zbl

[8] M. V. Fedoryuk, Asymptotic analysis: linear ordinary differential equations, Springer-Verlag, Berlin, 1993 | MR | MR | Zbl | Zbl

[9] M. A. Naimark, Linear differential operators. I, II, Ungar Publ., New York, 1967–1968 | MR | MR | MR | Zbl

[10] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[11] W. Wasow, “Asymptotic expansions for ordinary differential equations”, Pure Appl. Math., 14, Wiley, New York–London–Sydney, 1965 | MR | Zbl | Zbl