@article{SM_2007_198_12_a4,
author = {S. A. Stepin and A. G. Tarasov},
title = {Asymptotic distribution of resonances for one-dimensional},
journal = {Sbornik. Mathematics},
pages = {1787--1804},
year = {2007},
volume = {198},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a4/}
}
S. A. Stepin; A. G. Tarasov. Asymptotic distribution of resonances for one-dimensional. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1787-1804. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a4/
[1] V. de Alfaro, T. Regge, Potential scattering, North-Holland, Amsterdam; Wiley, New York, 1965 | MR | Zbl | Zbl
[2] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativiskoi kvantovoi mekhanike, Nauka, M., 1971 | Zbl
[3] M. Reed, B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York–London, 1978 | MR | MR | Zbl | Zbl
[4] R. B. Melrose, Geometric scattering theory, Stanford Lectures, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[5] M. Zworski, “Counting scattering poles”, Spectral and scattering theory, Proceedings of the Taniguchi international workshop (Sanda, Japan, 1992), Lecture Notes in Pure and Appl. Math., 161, Dekker, New York, 1994, 301–331 | MR | Zbl
[6] J. Sjöstrand, “A trace formula and review of some estimates for resonances”, Microlocal analysis and spectral theory (Lucca, Italy, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997, 377–437 | MR | Zbl
[7] M. Zworski, “Distribution of poles for scattering on the real line”, J. Funct. Anal., 73:2 (1987), 277–296 | DOI | MR | Zbl
[8] M. V. Fedoryuk, Asymptotic analysis: linear ordinary differential equations, Springer-Verlag, Berlin, 1993 | MR | MR | Zbl | Zbl
[9] M. A. Naimark, Linear differential operators. I, II, Ungar Publ., New York, 1967–1968 | MR | MR | MR | Zbl
[10] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl
[11] W. Wasow, “Asymptotic expansions for ordinary differential equations”, Pure Appl. Math., 14, Wiley, New York–London–Sydney, 1965 | MR | Zbl | Zbl