On the existence of a generalized solution
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1763-1786 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the conjugation problem we mean the problem of finding a solution $u(t)$ of a non-stationary Navier–Stokes system in some domain on some time interval $[0,T]$ such that the solution must satisfy certain conditions. Namely, the value of the solution at the boundary is equal to zero, and a conjugation condition is given which consists in the requirement that the initial value of the solution be connected with its values on the entire time interval by some linear operator defined on solutions: $u(0)=\nobreak U[u]$. In the special case where the values of the solution at the ends of the time interval coincide, we obtain the problem about a periodic solution. For the conjugation problem we establish the existence of a generalized solution in the case of bounded and unbounded domains of arbitrary dimension under various assumptions about the conjugation operator. A peculiarity of unbounded domains is the fact that a solution of the conjugation problem may not be quadratically integrable. Bibliography: 8 titles.
@article{SM_2007_198_12_a3,
     author = {L. I. Sazonov},
     title = {On the existence of a~generalized solution},
     journal = {Sbornik. Mathematics},
     pages = {1763--1786},
     year = {2007},
     volume = {198},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a3/}
}
TY  - JOUR
AU  - L. I. Sazonov
TI  - On the existence of a generalized solution
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1763
EP  - 1786
VL  - 198
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_12_a3/
LA  - en
ID  - SM_2007_198_12_a3
ER  - 
%0 Journal Article
%A L. I. Sazonov
%T On the existence of a generalized solution
%J Sbornik. Mathematics
%D 2007
%P 1763-1786
%V 198
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2007_198_12_a3/
%G en
%F SM_2007_198_12_a3
L. I. Sazonov. On the existence of a generalized solution. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1763-1786. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a3/

[1] V. I. Yudovich, “Periodic motions of a viscous incompressible fluid”, Soviet Math. Dokl., 1 (1960), 168–172 | MR | Zbl

[2] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[3] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[4] N. D. Kopachevskii, S. G. Krein, Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike, Nauka, M., 1989 | MR | Zbl

[5] S. G. Mikhlin, Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR

[6] E. M. Dynḱin, “Methods of the theory of singular integrals: Hilbert transform and Calderón–Zygmund theory”, Commutative harmonic analysis, I, Encyclopaedia Math. Sci., 15, Springer-Verlag, Berlin, 1991, 167–259 | MR | MR | Zbl | Zbl

[7] L. I. Sazonov, Gidrodinamicheskii proektor vo vneshnei oblasti, dep. v VINITI 3148-V00

[8] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York–London, 1963 | MR | MR | Zbl | Zbl