Representation of subharmonic functions in a~half-plane
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1747-1761

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of subharmonic functions of finite order is based to a considerable extent on integral formulae. In the present paper representations are obtained for subharmonic functions in the upper half-plane with more general growth $\gamma(r)$ than finite order. The main result can be stated as follows. Let $\gamma(r)$ be a growth function such that either $\ln\gamma(r)$ is a convex function of $\ln r$ or the lower order of $\gamma(r)$ is infinite. Then for each proper subharmonic function $v$ of growth $\gamma(r)$ there exist an unbounded set $\mathbf R$ of positive numbers and a family $\{u_R:R\in\mathbf R\}$ of proper subharmonic functions in the upper half-plane $\mathbb{C}_+$ such that 1) the full measures of the $u_R$ in the discs $|z|\leqslant R$ are equal to the full measure of the function $v$; 2) $v-u_R\rightrightarrows0$ uniformly on compact subsets of $\mathbb{C}_+$ as $R\to\infty$, $R\in\mathbf R$; 3) the function family $\{u_R:R\in\mathbf R\}$ satisfies the growth constraints uniformly in $R$, that is, $T(r,u_R)\leqslant A\gamma(Br)/r$, where $A$ and $B$ are constants and $T(r,\,\cdot\,)$ is the growth characteristic. Bibliography: 16 titles.
@article{SM_2007_198_12_a2,
     author = {K. G. Malyutin and N. Sadik},
     title = {Representation of subharmonic functions in a~half-plane},
     journal = {Sbornik. Mathematics},
     pages = {1747--1761},
     publisher = {mathdoc},
     volume = {198},
     number = {12},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - N. Sadik
TI  - Representation of subharmonic functions in a~half-plane
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1747
EP  - 1761
VL  - 198
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/
LA  - en
ID  - SM_2007_198_12_a2
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A N. Sadik
%T Representation of subharmonic functions in a~half-plane
%J Sbornik. Mathematics
%D 2007
%P 1747-1761
%V 198
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/
%G en
%F SM_2007_198_12_a2
K. G. Malyutin; N. Sadik. Representation of subharmonic functions in a~half-plane. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1747-1761. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/