Representation of subharmonic functions in a half-plane
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1747-1761 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of subharmonic functions of finite order is based to a considerable extent on integral formulae. In the present paper representations are obtained for subharmonic functions in the upper half-plane with more general growth $\gamma(r)$ than finite order. The main result can be stated as follows. Let $\gamma(r)$ be a growth function such that either $\ln\gamma(r)$ is a convex function of $\ln r$ or the lower order of $\gamma(r)$ is infinite. Then for each proper subharmonic function $v$ of growth $\gamma(r)$ there exist an unbounded set $\mathbf R$ of positive numbers and a family $\{u_R:R\in\mathbf R\}$ of proper subharmonic functions in the upper half-plane $\mathbb{C}_+$ such that 1) the full measures of the $u_R$ in the discs $|z|\leqslant R$ are equal to the full measure of the function $v$; 2) $v-u_R\rightrightarrows0$ uniformly on compact subsets of $\mathbb{C}_+$ as $R\to\infty$, $R\in\mathbf R$; 3) the function family $\{u_R:R\in\mathbf R\}$ satisfies the growth constraints uniformly in $R$, that is, $T(r,u_R)\leqslant A\gamma(Br)/r$, where $A$ and $B$ are constants and $T(r,\,\cdot\,)$ is the growth characteristic. Bibliography: 16 titles.
@article{SM_2007_198_12_a2,
     author = {K. G. Malyutin and N. Sadik},
     title = {Representation of subharmonic functions in a~half-plane},
     journal = {Sbornik. Mathematics},
     pages = {1747--1761},
     year = {2007},
     volume = {198},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - N. Sadik
TI  - Representation of subharmonic functions in a half-plane
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1747
EP  - 1761
VL  - 198
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/
LA  - en
ID  - SM_2007_198_12_a2
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A N. Sadik
%T Representation of subharmonic functions in a half-plane
%J Sbornik. Mathematics
%D 2007
%P 1747-1761
%V 198
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/
%G en
%F SM_2007_198_12_a2
K. G. Malyutin; N. Sadik. Representation of subharmonic functions in a half-plane. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1747-1761. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/

[1] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR | Zbl

[2] A. F. Grishin, “Nepreryvnost i asimptoticheskaya nepreryvnost subgarmonicheskikh funktsii. I”, Matem. fizika, analiz, geometriya, 1:2 (1994), 193–215 | MR | Zbl

[3] N. V. Govorov, Riemann's boundary problem with infinite index, Oper. Theory Adv. Appl., 67, Birkhäuzer, Basel, 1994 | MR | MR | Zbl | Zbl

[4] W. K. Hayman, “Questions of regularity connected with the Phragmen–Lindelöf principle”, J. Math. Pures Appl. (9), 35 (1956), 115–126 | MR | Zbl

[5] Jun-Iti Ito, “Subharmonic functions in the half-plane”, Trans. Amer. Math. Soc., 129:3 (1967), 479–499 | DOI | MR | Zbl

[6] L. A. Rubel, “A Fourier series method for entire functions”, Duke Math. J., 30:3 (1963), 437–442 | DOI | MR | Zbl

[7] L. A. Rubel, B. A. Taylor, “A Fourier series method for meromorphic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | MR | Zbl

[8] A. A. Kondratjuk, “The Fourier series method for entire and meromorphic functions of completely regular growth”, Math. USSR-Sb., 35:1 (1979), 63–84 | DOI | MR | Zbl | Zbl

[9] A. A. Kondratjuk, “The Fourier series method for entire and meromorphic functions of completely regular growth. II”, Math. USSR-Sb., 41:1 (1982), 101–113 | DOI | MR | Zbl | Zbl

[10] A. A. Kondratyuk, “The Fourier series method for entire and meromorphic functions of completely regular growth. III”, Math. USSR-Sb., 48:2 (1984), 327–338 | DOI | MR | MR | Zbl | Zbl

[11] K. G. Malyutin, “Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane”, Sb. Math., 192:6 (2001), 843–861 | DOI | MR | Zbl

[12] L. A. Rubel, “A generalized canonical product”, Sovremennye problemy teorii analiticheskikh funktsii, Mezhdunarodnaya konferentsiya po teorii analiticheskikh funktsii (Erevan, 1965), Nauka, M., 1966, 264–270 | MR | Zbl

[13] K. G. Malyutin, “Ryady Fure i $\delta$-subgarmonicheskie funktsii”, Teoriya priblizheniya funktsii (Donetsk, 1998), Tr. In-ta matem. i mekh., 3, Izd-vo In-ta prikl. matem. i mekh., Donetsk, 1998, 146–157 | MR | Zbl

[14] A. A. Kondratyuk, Ryady Fure i meromorfnye funktsi, Vischa shkola, Lvov, 1988 | Zbl

[15] B. Ya. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl

[16] A. F. Grishin, T. I. Malyutina, “General properties of subharmonic functions of finite order in a complex half-plane”, Vestn. Khark. nats. un-ta. Ser. matem., prikl. matem. i mekh., 475 (2000), 20–44 | MR | Zbl