@article{SM_2007_198_12_a2,
author = {K. G. Malyutin and N. Sadik},
title = {Representation of subharmonic functions in a~half-plane},
journal = {Sbornik. Mathematics},
pages = {1747--1761},
year = {2007},
volume = {198},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/}
}
K. G. Malyutin; N. Sadik. Representation of subharmonic functions in a half-plane. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1747-1761. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a2/
[1] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR | Zbl
[2] A. F. Grishin, “Nepreryvnost i asimptoticheskaya nepreryvnost subgarmonicheskikh funktsii. I”, Matem. fizika, analiz, geometriya, 1:2 (1994), 193–215 | MR | Zbl
[3] N. V. Govorov, Riemann's boundary problem with infinite index, Oper. Theory Adv. Appl., 67, Birkhäuzer, Basel, 1994 | MR | MR | Zbl | Zbl
[4] W. K. Hayman, “Questions of regularity connected with the Phragmen–Lindelöf principle”, J. Math. Pures Appl. (9), 35 (1956), 115–126 | MR | Zbl
[5] Jun-Iti Ito, “Subharmonic functions in the half-plane”, Trans. Amer. Math. Soc., 129:3 (1967), 479–499 | DOI | MR | Zbl
[6] L. A. Rubel, “A Fourier series method for entire functions”, Duke Math. J., 30:3 (1963), 437–442 | DOI | MR | Zbl
[7] L. A. Rubel, B. A. Taylor, “A Fourier series method for meromorphic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | MR | Zbl
[8] A. A. Kondratjuk, “The Fourier series method for entire and meromorphic functions of completely regular growth”, Math. USSR-Sb., 35:1 (1979), 63–84 | DOI | MR | Zbl | Zbl
[9] A. A. Kondratjuk, “The Fourier series method for entire and meromorphic functions of completely regular growth. II”, Math. USSR-Sb., 41:1 (1982), 101–113 | DOI | MR | Zbl | Zbl
[10] A. A. Kondratyuk, “The Fourier series method for entire and meromorphic functions of completely regular growth. III”, Math. USSR-Sb., 48:2 (1984), 327–338 | DOI | MR | MR | Zbl | Zbl
[11] K. G. Malyutin, “Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane”, Sb. Math., 192:6 (2001), 843–861 | DOI | MR | Zbl
[12] L. A. Rubel, “A generalized canonical product”, Sovremennye problemy teorii analiticheskikh funktsii, Mezhdunarodnaya konferentsiya po teorii analiticheskikh funktsii (Erevan, 1965), Nauka, M., 1966, 264–270 | MR | Zbl
[13] K. G. Malyutin, “Ryady Fure i $\delta$-subgarmonicheskie funktsii”, Teoriya priblizheniya funktsii (Donetsk, 1998), Tr. In-ta matem. i mekh., 3, Izd-vo In-ta prikl. matem. i mekh., Donetsk, 1998, 146–157 | MR | Zbl
[14] A. A. Kondratyuk, Ryady Fure i meromorfnye funktsi, Vischa shkola, Lvov, 1988 | Zbl
[15] B. Ya. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl
[16] A. F. Grishin, T. I. Malyutina, “General properties of subharmonic functions of finite order in a complex half-plane”, Vestn. Khark. nats. un-ta. Ser. matem., prikl. matem. i mekh., 475 (2000), 20–44 | MR | Zbl