A majoration principle for meromorphic functions
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1737-1745

Voir la notice de l'article provenant de la source Math-Net.Ru

A new majoration principle for meromorphic functions with prescribed poles is considered. Covering and distortion results for rational functions and polynomials are consequences of this principle. In particular, a simple proof of a Bernstein-type inequality for rational functions on several intervals is presented. Bibliography: 17 titles.
@article{SM_2007_198_12_a1,
     author = {V. N. Dubinin and S. I. Kalmykov},
     title = {A majoration principle for meromorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {1737--1745},
     publisher = {mathdoc},
     volume = {198},
     number = {12},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - S. I. Kalmykov
TI  - A majoration principle for meromorphic functions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1737
EP  - 1745
VL  - 198
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/
LA  - en
ID  - SM_2007_198_12_a1
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A S. I. Kalmykov
%T A majoration principle for meromorphic functions
%J Sbornik. Mathematics
%D 2007
%P 1737-1745
%V 198
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/
%G en
%F SM_2007_198_12_a1
V. N. Dubinin; S. I. Kalmykov. A majoration principle for meromorphic functions. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1737-1745. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/