A majoration principle for meromorphic functions
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1737-1745
Voir la notice de l'article provenant de la source Math-Net.Ru
A new majoration principle for meromorphic functions with
prescribed poles is considered. Covering and distortion results
for rational functions and polynomials are consequences of this
principle. In particular, a simple proof of a Bernstein-type inequality
for rational functions on several intervals is presented.
Bibliography: 17 titles.
@article{SM_2007_198_12_a1,
author = {V. N. Dubinin and S. I. Kalmykov},
title = {A majoration principle for meromorphic functions},
journal = {Sbornik. Mathematics},
pages = {1737--1745},
publisher = {mathdoc},
volume = {198},
number = {12},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/}
}
V. N. Dubinin; S. I. Kalmykov. A majoration principle for meromorphic functions. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1737-1745. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/