@article{SM_2007_198_12_a1,
author = {V. N. Dubinin and S. I. Kalmykov},
title = {A majoration principle for meromorphic functions},
journal = {Sbornik. Mathematics},
pages = {1737--1745},
year = {2007},
volume = {198},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/}
}
V. N. Dubinin; S. I. Kalmykov. A majoration principle for meromorphic functions. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1737-1745. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/
[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl
[2] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ., River Edge, NJ, 1994 | MR | Zbl
[3] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR | Zbl
[4] Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Math. Soc. Monogr. (N.S.), 26, Clarendon Press, Oxford Univ. Press, Oxford, 2002 | MR | Zbl
[5] V. Totik, “Polynomial inverse images and polynomial inequalities”, Acta Math., 187:1 (2001), 139–160 | DOI | MR | Zbl
[6] A. L. Lukashov, “Inequalities for derivatives of rational functions on several intervals”, Izv. Math., 68:3 (2004), 543–565 | DOI | MR | Zbl
[7] A. L. Lukashov, “Otsenki proizvodnykh ratsionalnykh funktsii i chetvertaya zadacha Zolotareva”, Algebra i analiz, 19:2 (2007), 122–130 | MR
[8] A. A. Gončar, “Zolotarev problems connected with rational functions”, Math. USSR-Sb., 7:4 (1969), 623–635 | DOI | MR | Zbl | Zbl
[9] I. P. Mityuk, Simmetrizatsionnye preobrazovaniya i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Izd-vo KGU, Krasnodar, 1980
[10] V. N. Dubinin, “On an application of conformal maps to inequalities for rational functions”, Izv. Math., 66:2 (2002), 285–297 | DOI | MR | Zbl
[11] K. Dochev, “Some extremal properties of polynomials”, Soviet Math. Dokl., 4 (1964), 1704–1706 | Zbl
[12] V. N. Dubinin, “Conformal mappings and inequalities for algebraic polynomials”, St. Petersburg Math. J., 13:5 (2002), 717–737 | MR | Zbl
[13] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl
[14] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979 | MR
[15] P. Borwein, T. Erdélyi, J. Zhang, “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc. (2), 50:3 (1994), 501–519 | MR | Zbl
[16] P. Borwein, T. Erdélyi, “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43:2 (1996), 413–423 | MR | Zbl
[17] X. Li, R. N. Mohapatra, R. S. Rodriguez, “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc. (2), 51:3 (1995), 523–531 | MR | Zbl