A majoration principle for meromorphic functions
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1737-1745 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new majoration principle for meromorphic functions with prescribed poles is considered. Covering and distortion results for rational functions and polynomials are consequences of this principle. In particular, a simple proof of a Bernstein-type inequality for rational functions on several intervals is presented. Bibliography: 17 titles.
@article{SM_2007_198_12_a1,
     author = {V. N. Dubinin and S. I. Kalmykov},
     title = {A majoration principle for meromorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {1737--1745},
     year = {2007},
     volume = {198},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - S. I. Kalmykov
TI  - A majoration principle for meromorphic functions
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1737
EP  - 1745
VL  - 198
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/
LA  - en
ID  - SM_2007_198_12_a1
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A S. I. Kalmykov
%T A majoration principle for meromorphic functions
%J Sbornik. Mathematics
%D 2007
%P 1737-1745
%V 198
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/
%G en
%F SM_2007_198_12_a1
V. N. Dubinin; S. I. Kalmykov. A majoration principle for meromorphic functions. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1737-1745. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a1/

[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl

[2] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ., River Edge, NJ, 1994 | MR | Zbl

[3] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR | Zbl

[4] Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Math. Soc. Monogr. (N.S.), 26, Clarendon Press, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[5] V. Totik, “Polynomial inverse images and polynomial inequalities”, Acta Math., 187:1 (2001), 139–160 | DOI | MR | Zbl

[6] A. L. Lukashov, “Inequalities for derivatives of rational functions on several intervals”, Izv. Math., 68:3 (2004), 543–565 | DOI | MR | Zbl

[7] A. L. Lukashov, “Otsenki proizvodnykh ratsionalnykh funktsii i chetvertaya zadacha Zolotareva”, Algebra i analiz, 19:2 (2007), 122–130 | MR

[8] A. A. Gončar, “Zolotarev problems connected with rational functions”, Math. USSR-Sb., 7:4 (1969), 623–635 | DOI | MR | Zbl | Zbl

[9] I. P. Mityuk, Simmetrizatsionnye preobrazovaniya i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Izd-vo KGU, Krasnodar, 1980

[10] V. N. Dubinin, “On an application of conformal maps to inequalities for rational functions”, Izv. Math., 66:2 (2002), 285–297 | DOI | MR | Zbl

[11] K. Dochev, “Some extremal properties of polynomials”, Soviet Math. Dokl., 4 (1964), 1704–1706 | Zbl

[12] V. N. Dubinin, “Conformal mappings and inequalities for algebraic polynomials”, St. Petersburg Math. J., 13:5 (2002), 717–737 | MR | Zbl

[13] N. I. Achieser, Theory of approximation, Ungar Publ., New York, 1956 | MR | MR | Zbl | Zbl

[14] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979 | MR

[15] P. Borwein, T. Erdélyi, J. Zhang, “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc. (2), 50:3 (1994), 501–519 | MR | Zbl

[16] P. Borwein, T. Erdélyi, “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43:2 (1996), 413–423 | MR | Zbl

[17] X. Li, R. N. Mohapatra, R. S. Rodriguez, “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc. (2), 51:3 (1995), 523–531 | MR | Zbl