On convergence of trajectory attractors of the 3D Navier–Stokes-$\alpha$
Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1703-1736 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the relations between the long-time dynamics of the Navier–Stokes-$\alpha$ model and the exact 3D Navier–Stokes system. We prove that bounded sets of solutions of the Navier–Stokes-$\alpha$ model converge to the trajectory attractor $\mathfrak A_0$ of the 3D Navier–Stokes system as the time approaches infinity and $\alpha$ approaches zero. In particular, we show that the trajectory attractor $\mathfrak A_\alpha$ of the Navier–Stokes-$\alpha$ model converges to the trajectory attractor $\mathfrak A_0$ of the 3D Navier–Stokes system as $\alpha\to0+$. We also construct the minimal limit $\mathfrak A_{\min}(\subseteq\!\mathfrak A_0)$ of the trajectory attractor $\mathfrak A_\alpha$ as $\alpha\to0+$ and prove that the set $\mathfrak A_{\min}$ is connected and strictly invariant. Bibliography: 35 titles.
@article{SM_2007_198_12_a0,
     author = {M. I. Vishik and E. S. Titi and V. V. Chepyzhov},
     title = {On convergence of trajectory attractors of the {3D~Navier{\textendash}Stokes-}$\alpha$},
     journal = {Sbornik. Mathematics},
     pages = {1703--1736},
     year = {2007},
     volume = {198},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_12_a0/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - E. S. Titi
AU  - V. V. Chepyzhov
TI  - On convergence of trajectory attractors of the 3D Navier–Stokes-$\alpha$
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1703
EP  - 1736
VL  - 198
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_12_a0/
LA  - en
ID  - SM_2007_198_12_a0
ER  - 
%0 Journal Article
%A M. I. Vishik
%A E. S. Titi
%A V. V. Chepyzhov
%T On convergence of trajectory attractors of the 3D Navier–Stokes-$\alpha$
%J Sbornik. Mathematics
%D 2007
%P 1703-1736
%V 198
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2007_198_12_a0/
%G en
%F SM_2007_198_12_a0
M. I. Vishik; E. S. Titi; V. V. Chepyzhov. On convergence of trajectory attractors of the 3D Navier–Stokes-$\alpha$. Sbornik. Mathematics, Tome 198 (2007) no. 12, pp. 1703-1736. http://geodesic.mathdoc.fr/item/SM_2007_198_12_a0/

[1] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “Camassa–Holm equations as a closure model for turbulent channel and pipe flow”, Phys. Rev. Lett., 81:24 (1998), 5338–5341 | DOI | MR | Zbl

[2] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “A connection between the Camassa–Holm equations and turbulent flows in channels and pipes”, Phys. Fluids, 11:8 (1999), 2343–2353 | DOI | MR

[3] S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, S. Wynne, “The Camassa–Holm equations and turbulence”, Phys. D, 133:1–4 (1999), 49–65 | DOI | MR

[4] S. Chen, D. D. Holm, L. G. Margolin, R. Zhang, “Direct numerical simulations of the Navier–Stokes alpha model”, Phys. D, 133:1–4 (1999), 66–83 | DOI | MR

[5] C. Foias, D. D. Holm, E. S. Titi, “The Navier–Stokes-alpha model of fluid turbulence”, Phys. D, 152–153 (2001), 505–519 | DOI | MR | Zbl

[6] C. Foias, D. D. Holm, E. S. Titi, “The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory”, J. Dynam. Differential Equations, 14:1 (2002), 1–35 | DOI | MR | Zbl

[7] K. Mohseni, B. Kosović, S. Shkoller, J. E Marsden, “Numerical simulations of the Lagrangian averaged Navier–Stokes equations for homogeneous isotropic turbulence”, Phys. Fluids, 15:2 (2003), 524–544 | DOI | MR

[8] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988 | MR | Zbl

[9] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl

[10] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[11] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Chicago Univ. Press, Chicago, IL, 1988 | MR | Zbl

[12] C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes equations and turbulence, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[13] G. R. Sell, Y. You, Dynamics of evolutionary equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002 | MR | Zbl

[14] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[15] D. D. Holm, “Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion”, Phys. D, 133:1–4 (1999), 215–269 | DOI | MR

[16] B. J. Geurts, D. D. Holm, “Regularization modeling for large-eddy simulation”, Phys. Fluids, 15:1 (2003), L13–L16 | DOI | MR

[17] C. Cao, D. D. Holm, E. S. Titi, “On the Clark-$\alpha$ model of turbulence: global regularity and long-time dynamics”, J. Turbul., 6 (2005), 1–11 | DOI | MR

[18] A. Cheskidov, D. D. Holm, E. Olson, E. S. Titi, “On a Leray-$\alpha$ model of turbulence”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2055 (2005), 629–649 | DOI | MR | Zbl

[19] A. A. Ilyin, E. M. Lunasin, E. S. Titi, “A modified-Leray-$\alpha$ subgrid scale model of turbulence”, Nonlinearity, 19:4 (2006), 879–897 | DOI | MR | Zbl

[20] Y. Cao, E. M. Lunasin, E. S. Titi, “Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models”, Commun. Math. Sci., 4:4 (2006), 823–848 | MR | Zbl

[21] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[22] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl

[23] A. Cheskidov, “Boundary layer for the Navier–Stokes-alpha model of fluid turbulence”, Arch. Ration. Mech. Anal., 172:3 (2004), 333–362 | DOI | MR | Zbl

[24] J. D. Gibbon, D. D. Holm, “Length-scale estimates for the LANS-$\alpha$ equations in terms of the Reynolds number”, Phys. D, 220:1 (2006), 69–78 | DOI | MR | Zbl

[25] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1309–1314 | MR | Zbl

[26] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl

[27] M. I. Vishik, V. V. Chepyzhov, “Trajectory and global attractors of three-dimensional Navier–Stokes systems”, Math. Notes, 71:1–2 (2002), 177–193 | DOI | MR | Zbl

[28] G. R. Sell, “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differential Equations, 8:1 (1996), 1–33 | DOI | MR | Zbl

[29] M. I. Vishik, E. S. Titi, V. V. Chepyzhov, “Trajectory attractor approximation of the 3D Navier–Stokes system by a Leray-$\alpha$ model”, Russian Acad. Sci. Dokl. Math., 71:1 (2005), 92–95 | MR

[30] V. V. Chepyzhov, E. S. Titi, M. I. Vishik, “On the convergence of solutions of the Leray-$\alpha$ model to the trajectory attractor of the 3D Navier–Stokes system”, Discrete Contin. Dyn. Syst., 17:3 (2007), 481–500 | MR | Zbl

[31] R. Temam, Navier–Stokes equations, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York–Oxford, 1979 | MR | MR | Zbl | Zbl

[32] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1., Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[33] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York–London, 1963 | MR | MR | Zbl | Zbl

[34] J.-P. Aubin, “Un théorème de compacité”, C. R. Acad. Sci. Paris, 256 (1963), 5042–5044 | MR | Zbl

[35] Yu. A. Dubinskij, “Weak convergence in nonlinear elliptic and parabolic equations”, Amer. Math. Soc. Transl. II, 67 (1968), 226–258 | MR | Zbl | Zbl