The degree of $\mathbb Q$-Fano threefolds
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1683-1702
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that the degree of three-dimensional Fano varieties with
terminal $\mathbb Q$-factorial singularities and
Picard number one is at most 125/2 and this bound is sharp.
Bibliography: 21 titles.
			
            
            
            
          
        
      @article{SM_2007_198_11_a6,
     author = {Yu. G. Prokhorov},
     title = {The degree of $\mathbb Q${-Fano} threefolds},
     journal = {Sbornik. Mathematics},
     pages = {1683--1702},
     publisher = {mathdoc},
     volume = {198},
     number = {11},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_11_a6/}
}
                      
                      
                    Yu. G. Prokhorov. The degree of $\mathbb Q$-Fano threefolds. Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1683-1702. http://geodesic.mathdoc.fr/item/SM_2007_198_11_a6/
