The degree of $\mathbb Q$-Fano threefolds
Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1683-1702

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the degree of three-dimensional Fano varieties with terminal $\mathbb Q$-factorial singularities and Picard number one is at most 125/2 and this bound is sharp. Bibliography: 21 titles.
@article{SM_2007_198_11_a6,
     author = {Yu. G. Prokhorov},
     title = {The degree of $\mathbb Q${-Fano} threefolds},
     journal = {Sbornik. Mathematics},
     pages = {1683--1702},
     publisher = {mathdoc},
     volume = {198},
     number = {11},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_11_a6/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - The degree of $\mathbb Q$-Fano threefolds
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1683
EP  - 1702
VL  - 198
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_11_a6/
LA  - en
ID  - SM_2007_198_11_a6
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T The degree of $\mathbb Q$-Fano threefolds
%J Sbornik. Mathematics
%D 2007
%P 1683-1702
%V 198
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_11_a6/
%G en
%F SM_2007_198_11_a6
Yu. G. Prokhorov. The degree of $\mathbb Q$-Fano threefolds. Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1683-1702. http://geodesic.mathdoc.fr/item/SM_2007_198_11_a6/