Approximation by dyadic wavelets
Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1665-1681 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of dyadic wavelets on the positive half-line $\mathbb R_+$ equipped with the operation of binary summation are studied. Several problems concerning approximation properties of such wavelets are solved. In particular, explicit formulae for the order of approximation of smooth functions and of binary-smooth functions on $\mathbb R_+$ (smooth in the dyadic metric on the binary half-line) are obtained. The dyadic approximations with best approximation properties are characterized. The relation between the smoothness of wavelets and their order of approximation is analysed in various function spaces. Bibliography: 24 titles.
@article{SM_2007_198_11_a5,
     author = {V. Yu. Protasov},
     title = {Approximation by dyadic wavelets},
     journal = {Sbornik. Mathematics},
     pages = {1665--1681},
     year = {2007},
     volume = {198},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Approximation by dyadic wavelets
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1665
EP  - 1681
VL  - 198
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/
LA  - en
ID  - SM_2007_198_11_a5
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Approximation by dyadic wavelets
%J Sbornik. Mathematics
%D 2007
%P 1665-1681
%V 198
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/
%G en
%F SM_2007_198_11_a5
V. Yu. Protasov. Approximation by dyadic wavelets. Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1665-1681. http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/

[1] I. J. Schoenberg, “Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae”, Quart. Appl. Math., 4 (1946), 45–99, 112–141 | MR | MR | Zbl

[2] G. Strang, G. J. Fix, An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, NJ, 1973 | MR | Zbl

[3] W. Dahmen, Ch. A. Micchelli, “On the approximation order from certain multivariate spline spaces”, J. Austral. Math. Soc. Ser. B, 26:2 (1984), 233–246 | DOI | MR | Zbl

[4] C. de Boor, R.-Q. Jia, “Controlled approximation and a characterization of the local approximation order”, Proc. Amer. Math. Soc., 95:4 (1985), 547–553 | DOI | MR | Zbl

[5] A. Ron, “Approximation orders of and approximation maps from local principal shift-invariant spaces”, J. Approx. Theory, 81:1 (1995), 38–65 | DOI | MR | Zbl

[6] C. de Boor, R. A. Devore, A. Ron, “Approximation from shift-invariant subspaces of $L_2(\mathbb R^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806 | DOI | MR | Zbl

[7] I. Dobeshi, Desyat lektsii po veivletam, RKhD, Izhevsk, 2001

[8] R.-Q. Jia, “Refinable shift-invariant spaces: from splines to wavelets”, Approximation theory VIII. Vol. 2. Wavelets and multilevel approximation, Papers from the 8th Texas international conference (College Station, TX, USA, 1995), Ser. Approx. Decompos., 6, World Sci. Publ., River Edge, NJ, 1995, 179–208 | MR | Zbl

[9] G. C. Kyriazis, “Wavelet coefficients measuring smoothness in $H_p$(open face $R^d$)”, Appl. Comput. Harmon. Anal., 3:2 (1996), 100–119 | DOI | MR | Zbl

[10] G. Kyriazis, P. Petrushev, “New bases for Triebel–Lizorkin and Besov spaces”, Trans. Amer. Math. Soc., 354:2 (2002), 749–776 | DOI | MR | Zbl

[11] A. Ron, “Smooth refinable functions provide good approximation orders”, SIAM J. Math. Anal., 28:3 (1997), 731–748 | DOI | MR | Zbl

[12] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | Zbl

[13] C. de Boor, R. A. DeVore, A. Ron, “Approximation orders of FSI spaces in $L_2(\mathbb R^d)$”, Constr. Approx., 14:3 (1998), 411–427 | DOI | MR | Zbl

[14] G. C. Kyriazis, “Approximation from shift-invariant spaces”, Constr. Approx., 11:2 (1995), 141–164 | DOI | MR | Zbl

[15] G. C. Kyriazis, “Approximation of distribution spaces by means of kernel operators”, J. Fourier Anal. Appl., 2:3 (1995), 261–286 | DOI | MR | Zbl

[16] W. Ch. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Internat. J. Math. Math. Sci., 21:2 (1998), 307–314 | DOI | MR | Zbl

[17] W. Ch. Lang, “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24:3 (1998), 533–544 | MR | Zbl

[18] Yu. A. Farkov, “Orthogonal $p$-wavelets on $\mathbb R_+$”, Wavelets and splines (St. Petersburg, Russia, 2003), St. Petersburg Univ. Press, St. Petersburg, 2005, 4–26 | MR | Zbl

[19] Yu. A. Farkov, “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | MR | Zbl

[20] V. Yu. Protasov, Yu. A. Farkov, “Diadicheskie veivlety i masshtabiruyuschie funktsii na polupryamoi”, Matem. sb., 197:10 (2006), 129–160 | MR

[21] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[22] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 ; B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | Zbl | MR | Zbl

[23] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[24] B. Sendov, “Adapted multiresolution analysis and wavelets”, Functions, series, operators (Budapest, Hungary, 1999), János Bolyai Math. Soc., Budapest, 2002, 23–38 | MR | Zbl