Approximation by dyadic wavelets
Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1665-1681

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of dyadic wavelets on the positive half-line $\mathbb R_+$ equipped with the operation of binary summation are studied. Several problems concerning approximation properties of such wavelets are solved. In particular, explicit formulae for the order of approximation of smooth functions and of binary-smooth functions on $\mathbb R_+$ (smooth in the dyadic metric on the binary half-line) are obtained. The dyadic approximations with best approximation properties are characterized. The relation between the smoothness of wavelets and their order of approximation is analysed in various function spaces. Bibliography: 24 titles.
@article{SM_2007_198_11_a5,
     author = {V. Yu. Protasov},
     title = {Approximation by dyadic wavelets},
     journal = {Sbornik. Mathematics},
     pages = {1665--1681},
     publisher = {mathdoc},
     volume = {198},
     number = {11},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Approximation by dyadic wavelets
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1665
EP  - 1681
VL  - 198
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/
LA  - en
ID  - SM_2007_198_11_a5
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Approximation by dyadic wavelets
%J Sbornik. Mathematics
%D 2007
%P 1665-1681
%V 198
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/
%G en
%F SM_2007_198_11_a5
V. Yu. Protasov. Approximation by dyadic wavelets. Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1665-1681. http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/