@article{SM_2007_198_11_a5,
author = {V. Yu. Protasov},
title = {Approximation by dyadic wavelets},
journal = {Sbornik. Mathematics},
pages = {1665--1681},
year = {2007},
volume = {198},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/}
}
V. Yu. Protasov. Approximation by dyadic wavelets. Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1665-1681. http://geodesic.mathdoc.fr/item/SM_2007_198_11_a5/
[1] I. J. Schoenberg, “Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae”, Quart. Appl. Math., 4 (1946), 45–99, 112–141 | MR | MR | Zbl
[2] G. Strang, G. J. Fix, An analysis of the finite element method, Prentice-Hall, Englewood Cliffs, NJ, 1973 | MR | Zbl
[3] W. Dahmen, Ch. A. Micchelli, “On the approximation order from certain multivariate spline spaces”, J. Austral. Math. Soc. Ser. B, 26:2 (1984), 233–246 | DOI | MR | Zbl
[4] C. de Boor, R.-Q. Jia, “Controlled approximation and a characterization of the local approximation order”, Proc. Amer. Math. Soc., 95:4 (1985), 547–553 | DOI | MR | Zbl
[5] A. Ron, “Approximation orders of and approximation maps from local principal shift-invariant spaces”, J. Approx. Theory, 81:1 (1995), 38–65 | DOI | MR | Zbl
[6] C. de Boor, R. A. Devore, A. Ron, “Approximation from shift-invariant subspaces of $L_2(\mathbb R^d)$”, Trans. Amer. Math. Soc., 341:2 (1994), 787–806 | DOI | MR | Zbl
[7] I. Dobeshi, Desyat lektsii po veivletam, RKhD, Izhevsk, 2001
[8] R.-Q. Jia, “Refinable shift-invariant spaces: from splines to wavelets”, Approximation theory VIII. Vol. 2. Wavelets and multilevel approximation, Papers from the 8th Texas international conference (College Station, TX, USA, 1995), Ser. Approx. Decompos., 6, World Sci. Publ., River Edge, NJ, 1995, 179–208 | MR | Zbl
[9] G. C. Kyriazis, “Wavelet coefficients measuring smoothness in $H_p$(open face $R^d$)”, Appl. Comput. Harmon. Anal., 3:2 (1996), 100–119 | DOI | MR | Zbl
[10] G. Kyriazis, P. Petrushev, “New bases for Triebel–Lizorkin and Besov spaces”, Trans. Amer. Math. Soc., 354:2 (2002), 749–776 | DOI | MR | Zbl
[11] A. Ron, “Smooth refinable functions provide good approximation orders”, SIAM J. Math. Anal., 28:3 (1997), 731–748 | DOI | MR | Zbl
[12] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | Zbl
[13] C. de Boor, R. A. DeVore, A. Ron, “Approximation orders of FSI spaces in $L_2(\mathbb R^d)$”, Constr. Approx., 14:3 (1998), 411–427 | DOI | MR | Zbl
[14] G. C. Kyriazis, “Approximation from shift-invariant spaces”, Constr. Approx., 11:2 (1995), 141–164 | DOI | MR | Zbl
[15] G. C. Kyriazis, “Approximation of distribution spaces by means of kernel operators”, J. Fourier Anal. Appl., 2:3 (1995), 261–286 | DOI | MR | Zbl
[16] W. Ch. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Internat. J. Math. Math. Sci., 21:2 (1998), 307–314 | DOI | MR | Zbl
[17] W. Ch. Lang, “Wavelet analysis on the Cantor dyadic group”, Houston J. Math., 24:3 (1998), 533–544 | MR | Zbl
[18] Yu. A. Farkov, “Orthogonal $p$-wavelets on $\mathbb R_+$”, Wavelets and splines (St. Petersburg, Russia, 2003), St. Petersburg Univ. Press, St. Petersburg, 2005, 4–26 | MR | Zbl
[19] Yu. A. Farkov, “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | MR | Zbl
[20] V. Yu. Protasov, Yu. A. Farkov, “Diadicheskie veivlety i masshtabiruyuschie funktsii na polupryamoi”, Matem. sb., 197:10 (2006), 129–160 | MR
[21] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Adam Hilger, Bristol, 1990 | MR | Zbl
[22] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 ; B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | Zbl | MR | Zbl
[23] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl
[24] B. Sendov, “Adapted multiresolution analysis and wavelets”, Functions, series, operators (Budapest, Hungary, 1999), János Bolyai Math. Soc., Budapest, 2002, 23–38 | MR | Zbl