The inverse spectral problem for pencils
Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1579-1598 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem of spectral analysis for a quadratic pencil of Sturm–Liouville operators on a finite interval is considered. A uniqueness theorem is proved, a solution algorithm is presented, and sufficient conditions for the solubility of the inverse problem are obtained. Bibliography: 31 titles.
@article{SM_2007_198_11_a2,
     author = {I. M. Guseinov and I. M. Nabiev},
     title = {The inverse spectral problem for pencils},
     journal = {Sbornik. Mathematics},
     pages = {1579--1598},
     year = {2007},
     volume = {198},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_11_a2/}
}
TY  - JOUR
AU  - I. M. Guseinov
AU  - I. M. Nabiev
TI  - The inverse spectral problem for pencils
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1579
EP  - 1598
VL  - 198
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_11_a2/
LA  - en
ID  - SM_2007_198_11_a2
ER  - 
%0 Journal Article
%A I. M. Guseinov
%A I. M. Nabiev
%T The inverse spectral problem for pencils
%J Sbornik. Mathematics
%D 2007
%P 1579-1598
%V 198
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2007_198_11_a2/
%G en
%F SM_2007_198_11_a2
I. M. Guseinov; I. M. Nabiev. The inverse spectral problem for pencils. Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1579-1598. http://geodesic.mathdoc.fr/item/SM_2007_198_11_a2/

[1] V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuzer, Basel, 1986 | MR | MR | Zbl | Zbl

[2] B. M. Levitan, Inverse Sturm–Liouville problems, VSP, Zeist, 1987 | MR | MR | Zbl | Zbl

[3] R. Beals, P. Deift, C. Tomei, Direct and inverse scattering on the line, Math. Surveys Monogr., 28, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[4] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[5] B. M. Levitan, M. G. Gasymov, “Determination of a differential equation by two of its spectra”, Russian Math. Surveys, 19:2 (1964), 1–63 | DOI | MR | Zbl

[6] I. V. Stankevic, “On an inverse problem of spectral analysis for Hill's equation”, Soviet Math. Dokl., 11 (1970), 582–586 | MR | Zbl

[7] V. A. Sadovnichii, “Uniqueness of a solution of the inverse problem of spectral analysis for a differential equation with periodic boundary values”, Differential Equations, 9 (1974), 207–211 | MR | Zbl | Zbl

[8] V. A. Marchenko, I. V. Ostrovskii, “Kharakteristika spektra operatora Khilla”, Matem. sb., 97(139):4(8) (1975), 540–606 | MR | Zbl

[9] O. A. Plaksina, “Obratnye zadachi spektralnogo analiza dlya operatorov Shturma–Liuvillya s nerazdelennymi granichnymi usloviyami”, Matem. sb., 131(173):1(9) (1986), 3–26 ; O. A. Plaksina, “Inverse problems of spectral analysis for the Sturm–Liouville operators with nonseparated boundary conditions”, Math. USSR-Sb., 59:1 (1988), 1–23 | MR | Zbl | DOI | Zbl

[10] O. A. Plaksina, “Obratnye zadachi spektralnogo analiza dlya operatorov Shturma-Liuvillya s nerazdelennymi granichnymi usloviyami. II”, Matem. sb., 136(178):1(5) (1988), 140–159 ; O. A. Plaksina, “Inverse problems of spectral analysis for Sturm–Liouville operators with nonseparated boundary conditions. II”, Math. USSR-Sb., 64:1 (1989), 141–160 | MR | Zbl | DOI

[11] V. A. Yurko, “The inverse spectral problem for differential operators with nonseparated boundary conditions”, J. Math. Anal. Appl., 250:1 (2000), 266–289 | DOI | MR | Zbl

[12] I. M. Guseinov, I. M. Nabiev, “Obratnaya zadacha dlya operatora Shturma–Liuvillya s nerazdelennymi kraevymi usloviyami”, Izv. AN AzSSR. Ser. fiz.-tekh., matem. nauk, 8:2 (1987), 22–29 | MR | Zbl

[13] I. M. Gusejnov, I. M. Nabiev, “A class of inverse boundary value problems for Sturm–Liouville operators”, Differential Equations, 25:7 (1990), 779–784 | MR | Zbl

[14] M. G. Gasymov, I. M. Guseinov, I. M. Nabiev, “An inverse problem for the Sturm–Liouville operator with nonseparable self-adjoint boundary conditions”, Siberian Math. J., 31:6 (1990), 910–918 | DOI | MR | Zbl

[15] I. M. Guseinov, I. M. Nabiev, “Solution of a class of inverse boundary-value Sturm–Liouville problems”, Sb. Math., 186:5 (1995), 661–674 | DOI | MR | Zbl

[16] V. A. Sadovničiĭ, “Uniqueness of the solution of the inverse problem for a second-order equation with nondecaying boundary conditions”, Moscow Univ. Math. Bull., 29:1–2 (1974), 116–123 | MR | Zbl

[17] V. A. Yurko, “The inverse problem for differential operators of second order with regular boundary conditions”, Math. Notes, 18:4 (1976), 928–932 | DOI | MR | Zbl | Zbl

[18] V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “Analogues of Borg's uniqueness theorem in the case of nonseparated boundary conditions”, Russian Acad. Sci. Dokl. Math., 60:1 (1999), 115–117 | MR | MR | Zbl

[19] M. Jaulent, C. Jean, “The inverse problem for the one-dimensional Schrödinger equation with an energy-dependent potential. I, II”, Ann. Inst. H. Poincaré Sect. A (N.S.), 25:2 (1976), 105–137 ; | MR | Zbl | MR | Zbl

[20] M. G. Gasymov, “K spektralnoi teorii differentsialnykh operatorov, polinomialno zavisyaschikh ot parametra”, Sovmestnye zasedaniya seminara imeni I. G. Petrovskogo po differentsialnym uravneniyam i matematicheskim problemam fiziki i Moskovskogo matematicheskogo obschestva, UMN, 37:4 (1982), 99

[21] V. A. Yurko, “An inverse problem for differential operator pencils”, Sb. Math., 191:10 (2000), 1561–1586 | DOI | MR | Zbl

[22] M. G. Gasymov, G. Sh. Guseinov, “Opredelenie operatora diffuzii po spektralnym dannym”, Dokl. AN AzSSR, 37:2 (1981), 19–23 | MR | Zbl

[23] G. Sh. Guseĭnov, “On spectral analysis of a quadratic pencil of Sturm–Liouville operators”, Soviet Math. Dokl., 32:3 (1985), 859–862 | MR | Zbl

[24] G. Sh. Guseinov, “Obratnye spektralnye zadachi dlya kvadratichnogo puchka operatorov Shturma–Liuvillya na konechnom intervale”, Spektralnaya teoriya operatorov i ee pril., 1986, no. 7, 51–101 | MR | Zbl

[25] I. M. Nabiev, “The inverse periodic problem for a diffusion operator”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 23:4 (2003), 125–130 | MR | Zbl

[26] I. M. Nabiev, “Obratnaya spektralnaya zadacha dlya operatora diffuzii na otrezke”, Matem. fizika, analiz, geometriya, 11:3 (2004), 302–313 | MR | Zbl

[27] V. N. Pivovarchik, “Reconstruction of the potential of the Sturm–Liouville equation from three spectra of boundary value problems”, Funct. Anal. Appl., 33:3 (1999), 233–235 | DOI | MR | Zbl

[28] I. M. Guseĭnov, I. M. Nabiev, “A class of inverse problems for a quadratic pencil of Sturm–Liouville operators”, Differ. Equ., 36:3 (2000), 471–473 | DOI | MR | Zbl

[29] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[30] G. M. Fichtenholz, Differential- und Integralrechnung. III, Hochschulbucher fur Math., 63, Barth (Leipzig), Leipzig, 1992 | MR | Zbl | Zbl

[31] I. M. Nabiev, “Multiplicities and relative position of eigenvalues of a quadratic pencil of Sturm–Liouville operators”, Math. Notes, 67:3 (2000), 309–319 | DOI | MR | Zbl