Local two-radii theorem in symmetric spaces
Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1553-1577

Voir la notice de l'article provenant de la source Math-Net.Ru

Various classes of functions on a non-compact rank-one Riemannian symmetric space $X$ with vanishing integrals over all balls of fixed radius are studied. A description in the form of a series in hypergeometric functions is obtained for such classes and a uniqueness theorem is proved. This makes it possible to establish the local two-radii theorem in $X$ in a definitive form. Bibliography: 45 titles.
@article{SM_2007_198_11_a1,
     author = {V. V. Volchkov},
     title = {Local two-radii theorem in symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {1553--1577},
     publisher = {mathdoc},
     volume = {198},
     number = {11},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_11_a1/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - Local two-radii theorem in symmetric spaces
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1553
EP  - 1577
VL  - 198
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_11_a1/
LA  - en
ID  - SM_2007_198_11_a1
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T Local two-radii theorem in symmetric spaces
%J Sbornik. Mathematics
%D 2007
%P 1553-1577
%V 198
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_11_a1/
%G en
%F SM_2007_198_11_a1
V. V. Volchkov. Local two-radii theorem in symmetric spaces. Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1553-1577. http://geodesic.mathdoc.fr/item/SM_2007_198_11_a1/