Local two-radii theorem in symmetric spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1553-1577
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Various classes of functions on a non-compact rank-one
Riemannian symmetric space $X$ with vanishing integrals
over all balls of fixed radius are studied. A description in the form
of a series in hypergeometric functions is obtained for such classes and
a uniqueness theorem is proved. This makes it possible to establish the
local two-radii theorem in $X$ in a definitive form.
Bibliography: 45 titles.
			
            
            
            
          
        
      @article{SM_2007_198_11_a1,
     author = {V. V. Volchkov},
     title = {Local two-radii theorem in symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {1553--1577},
     publisher = {mathdoc},
     volume = {198},
     number = {11},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_11_a1/}
}
                      
                      
                    V. V. Volchkov. Local two-radii theorem in symmetric spaces. Sbornik. Mathematics, Tome 198 (2007) no. 11, pp. 1553-1577. http://geodesic.mathdoc.fr/item/SM_2007_198_11_a1/
