Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval
Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1517-1534 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The result obtained in this paper allows one to identify the approximate convergence at a point (or its absence) of the values of the Whittaker operators: $$ L_n(f,x)=\sum_{k=0}^{n}\frac{\sin(nx-k\pi)}{nx-k\pi}\,f\biggl(\frac{k\pi}{n}\biggr). $$ The only requirement on the function $f$ to be approximated is its continuity on $[0,\pi]$. The information about $f$ can be reduced to its values at the nodes $k\pi/n$ lying in a neighbourhood of the point at which the approximation properties are actually under consideration. A test for the uniform convergence of these operators on compact subsets of $(0,\pi)$ is also obtained for continuous functions, which is similar to Privalov's criterion of the convergence of the Lagrange–Chebyshev interpolation polynomials and trigonometric polynomials. Bibliography: 32 titles.
@article{SM_2007_198_10_a6,
     author = {A. Yu. Trynin},
     title = {Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a~closed interval},
     journal = {Sbornik. Mathematics},
     pages = {1517--1534},
     year = {2007},
     volume = {198},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_10_a6/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1517
EP  - 1534
VL  - 198
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_10_a6/
LA  - en
ID  - SM_2007_198_10_a6
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval
%J Sbornik. Mathematics
%D 2007
%P 1517-1534
%V 198
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2007_198_10_a6/
%G en
%F SM_2007_198_10_a6
A. Yu. Trynin. Tests for pointwise and uniform convergence of sinc approximations of continuous functions on a closed interval. Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1517-1534. http://geodesic.mathdoc.fr/item/SM_2007_198_10_a6/

[1] G. A. A. Plana, “Sur une nouvelle expression analytique des nombres Bernoulliens, propre à exprimer en termes finis la formule générale pour la sommation des suites”, Mem. Acad. Sci. Torino (1), 25 (1820), 403–418

[2] É. Borel, “Sur l'interpolation”, C. R. Math. Acad. Sci. Paris, 124 (1897), 673–676 | Zbl

[3] E. T. Whittaker, “On the functions which are represented by the expansions of the interpolation-theory”, Proc. Roy. Soc. Edinburgh Sect. A, 35:2 (1914–1915), 181–194 | Zbl

[4] F. Stenger, “Approximations via Whittaker's cardinal function”, J. Approximation Theory, 17:3 (1976), 222–240 | DOI | MR | Zbl

[5] A. S. Zhuk, V. V. Zhuk, “Some orthogonalities in approximation theory”, J. Math. Sci. (N. Y.), 133:6 (2006), 1652–1675 | DOI | MR | Zbl

[6] F. Stenger, Numerical methods based on sinc and analytic functions, Springer Ser. Comput. Math., 20, Springer-Verlag, New York, 1993 | MR | Zbl

[7] V. A. Kotelnikov, “O propusknoi sposobnosti “efira” i provoloki v elektrosvyazi”, Materialy k I Vsesoyuznomu s'ezdu po voprosam tekhnicheskoi rekonstruktsii dela svyazi i razvitiya slabotochnoi promyshlennosti, RKKA, M., 1933

[8] J. J. Voss, “A sampling theorem with nonuniform complex nodes”, J. Approx. Theory, 90:2 (1997), 235–254 | DOI | MR | Zbl

[9] P. L. Butzer, G. Hinsen, “Reconstruction of bounded signals from pseudo-periodic, irregularly spaced samples”, Signal Process., 17:1 (1989), 1–17 | DOI | MR

[10] J. R. Higgins, “Sampling theorems and the contour integral method”, Appl. Anal., 41:1–4 (1991), 155–169 | DOI | MR | Zbl

[11] G. Hinsen, “Irregular sampling of bandlimited $L^p$-functions”, J. Approx. Theory, 72:3 (1993), 346–364 | DOI | MR | Zbl

[12] K. Seip, “An irregular sampling theorem for functions bandlimited in a generalized sense”, SIAM J. Appl. Math., 47:5 (1987), 1112–1116 | DOI | MR | Zbl

[13] R. M. Young, An introduction to nonharmonic Fourier series, Pure Appl. Math., 93, Academic Press, New York–London, 1980 | MR | Zbl

[14] H. P. Kramer, “A generalized sampling theorem”, J. Math. Phys., 38 (1959), 68–72 | MR | Zbl

[15] A. I. Zayed, G. Hinsen, P. L. Butzer, “On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm–Liouville problems”, SIAM J. Appl. Math., 50:3 (1990), 893–909 | DOI | MR | Zbl

[16] P. L. Butzer, R. L. Stens, “A modification of the Whittaker–Kotelnikov–Shannon sampling series”, Aequationes Math., 28:1 (1985), 305–311 | DOI | MR | Zbl

[17] F. Stenger, “An analytic function which is an approximate characteristic function”, SIAM J. Numer. Anal., 12:2 (1975), 239–254 | DOI | MR | Zbl

[18] A. A. Privalov, “Uniform convergence criteria for Lagrange interpolation processes”, Soviet Math. (Iz. VUZ), 30:5 (1986), 65–77 | MR | Zbl | Zbl

[19] A. A. Privalov, Teoriya interpolirovaniya funktsii, Izd-vo Saratovskogo un-ta, Saratov, 1990 | MR | Zbl

[20] A. A. Privalov, Izbrannye trudy, Izd-vo Saratovskogo un-ta, Saratov, 1997 | Zbl

[21] A. Yu. Trynin, O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha–Shturma–Liuvillya, dep. v VINITI 1763-V91

[22] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[23] A. Yu. Trynin, “Ob approksimatsii analiticheskikh funktsii operatorami Lagranzha–Shturma–Liuvillya”, Tezisy dokladov 10-oi Saratovskoi zimnei shkoly (Saratov, 2000), 2000 | Zbl

[24] V. P. Sklyarov, “O nailuchshei ravnomernoi sinc approksimatsii na konechnom otrezke”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 13-i Saratovskoi zimnei shkoly (Saratov, 2006), 2006

[25] V. I. Smirnov, N. A. Lebedev, Functions of a complex variable. Constructive theory, MIT Press, Cambridge, MA, 1968 | MR | MR | Zbl | Zbl

[26] G. P. Nevai, “Zamechaniya ob interpolirovanii”, Acta Math. Acad. Sci. Hungar., 25:1–2 (1974), 123–144 | DOI | MR | Zbl

[27] G. P. Nevai, “O skhodimosti lagranzheva interpolirovaniya po uzlam Lagerra”, Publ. Math. Debrecen, 20 (1973), 235–239 | MR | Zbl

[28] J. Marcinkiewicz, “Quelques remarques sur l'interpolation”, Acta Sci. Math. (Szeged), 8 (1937), 127–130 | Zbl

[29] S. Lozinski, “On convergence and summability of Fourier series and interpolation processes”, Matem. sb., 14(56):3 (1944), 175–268 | MR | Zbl

[30] N. K. Bary, A treatise on trigonometric series, Macmillan, New York; Pergamon Press, Oxford–London–New York, 1964 | MR | MR | Zbl

[31] S. N. Bernshtein, “Neskolko zamechanii ob interpolirovanii”, Sobranie sochinenii. Tom I. Konstruktivnaya teoriya funktsii, Izd-vo Akad. nauk SSSR, M., 1952 | MR | Zbl

[32] G. I. Natanson, “Ob odnom interpolyatsionnom protsesse”, Uchenye zapiski Len. ped. in-ta im. A. I. Gertsena, 166 (1958), 213–219 | MR