Spectral analysis of linearized stationary equations of a~compressible viscous fluid
Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1495-1515

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of an operator on a torus described by linearized stationary equations of a compressible viscous fluid is considered. These equations are obtained by the linearization of non-linear equations of a compressible viscous fluid at an arbitrary solution depending on the $x$-variable. It is shown that the spectrum of the operator is a discrete point set, which lies in a sector of the complex plane that is symmetric relative to the real axis and has its vertex on the positive half-axis. Bibliography: 10 titles.
@article{SM_2007_198_10_a5,
     author = {M. A. Pribyl},
     title = {Spectral analysis of linearized stationary equations of a~compressible viscous fluid},
     journal = {Sbornik. Mathematics},
     pages = {1495--1515},
     publisher = {mathdoc},
     volume = {198},
     number = {10},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_10_a5/}
}
TY  - JOUR
AU  - M. A. Pribyl
TI  - Spectral analysis of linearized stationary equations of a~compressible viscous fluid
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1495
EP  - 1515
VL  - 198
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_10_a5/
LA  - en
ID  - SM_2007_198_10_a5
ER  - 
%0 Journal Article
%A M. A. Pribyl
%T Spectral analysis of linearized stationary equations of a~compressible viscous fluid
%J Sbornik. Mathematics
%D 2007
%P 1495-1515
%V 198
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2007_198_10_a5/
%G en
%F SM_2007_198_10_a5
M. A. Pribyl. Spectral analysis of linearized stationary equations of a~compressible viscous fluid. Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1495-1515. http://geodesic.mathdoc.fr/item/SM_2007_198_10_a5/