@article{SM_2007_198_10_a3,
author = {S. V. Mikhailov},
title = {Transcendence type for almost all points in real $m$-dimensional space},
journal = {Sbornik. Mathematics},
pages = {1443--1463},
year = {2007},
volume = {198},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2007_198_10_a3/}
}
S. V. Mikhailov. Transcendence type for almost all points in real $m$-dimensional space. Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1443-1463. http://geodesic.mathdoc.fr/item/SM_2007_198_10_a3/
[1] S. Lang, Introduction to transcendental numbers, Addison-Wesley, Reading, MA–London–Don Mills, ON, 1966 | MR | Zbl
[2] N. I. Fel'dman, “Approximation of certain transcendental numbers. I: The approximation of logarithms of algebraic numbers”, Trans. Amer. Math. Soc., 59 (1966), 224–245 | MR | Zbl | Zbl
[3] K. Mahler, “On the order function of a transcendental number”, Acta Arith., 18 (1971), 63–76 | MR | Zbl
[4] Yu. V. Nesterenko, “An order function for almost all numbers”, Math. Notes, 15:3 (1974), 234–240 | DOI | MR | Zbl | Zbl
[5] P. R. Halmos, Measure theory, Nostrand, New York; Macmillan, London, 1950 | MR | MR | Zbl
[6] Yu. V. Nesterenko, “Measure of algebraic independence for almost all pairs of $p$-adic numbers”, Math. Notes, 36:3 (1984), 642–647 | DOI | MR | Zbl
[7] G. V. Chudnovsky, Contributions to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl
[8] F. Amoroso, “Polynomials with high multiplicity”, Acta Arith., 56:4 (1990), 345–364 | MR | Zbl
[9] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl
[10] Yu. V. Nesterenko, “On the measure of algebraic independence of the values of Ramanujan functions”, Proc. Steklov Inst. Math., 218 (1997), 294–331 | MR | Zbl
[11] Yu. V. Nesterenko, “Otsenki chisla nulei funktsii nekotorykh klassov”, Acta Arith., 53:1 (1989), 29–46 | MR | Zbl
[12] Yu. V. Nesterenko, “Estimates for the characteristic function of a prime ideal”, Math. USSR-Sb., 51:1 (1985), 9–32 | DOI | MR | Zbl
[13] O. Zariski, P. Samuel, Commutative algebra, vol. 2, Nostrand, Princeton–Toronto–New York–London, 1958 | MR | Zbl | Zbl