Transcendence type for almost all points in real $m$-dimensional space
Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1443-1463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $P$ be a polynomial of $m$ variables with integer coefficients, $\deg P$ the total degree of $P$, $H(P)$ the maximum absolute value of the coefficients of $P$, and $t(P)=\deg P+\ln H(P)$ the type of the polynomial $P$. It is shown that for almost all points $\overline\xi\in\mathbb R^m$ (in the sense of Lebesgue $m$-measure) there exists a constant $c=c(\overline\xi)>0$ such that the inequality $\ln\lvert P(\overline\xi)\rvert>-ct(P)^{m+1}$ holds for each polynomial $P\in\mathbb Z[x_1,\dots,x_m]$, $P\not\equiv0$. Bibliography: 13 titles.
@article{SM_2007_198_10_a3,
     author = {S. V. Mikhailov},
     title = {Transcendence type for almost all points in real $m$-dimensional space},
     journal = {Sbornik. Mathematics},
     pages = {1443--1463},
     year = {2007},
     volume = {198},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_10_a3/}
}
TY  - JOUR
AU  - S. V. Mikhailov
TI  - Transcendence type for almost all points in real $m$-dimensional space
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1443
EP  - 1463
VL  - 198
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_10_a3/
LA  - en
ID  - SM_2007_198_10_a3
ER  - 
%0 Journal Article
%A S. V. Mikhailov
%T Transcendence type for almost all points in real $m$-dimensional space
%J Sbornik. Mathematics
%D 2007
%P 1443-1463
%V 198
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2007_198_10_a3/
%G en
%F SM_2007_198_10_a3
S. V. Mikhailov. Transcendence type for almost all points in real $m$-dimensional space. Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1443-1463. http://geodesic.mathdoc.fr/item/SM_2007_198_10_a3/

[1] S. Lang, Introduction to transcendental numbers, Addison-Wesley, Reading, MA–London–Don Mills, ON, 1966 | MR | Zbl

[2] N. I. Fel'dman, “Approximation of certain transcendental numbers. I: The approximation of logarithms of algebraic numbers”, Trans. Amer. Math. Soc., 59 (1966), 224–245 | MR | Zbl | Zbl

[3] K. Mahler, “On the order function of a transcendental number”, Acta Arith., 18 (1971), 63–76 | MR | Zbl

[4] Yu. V. Nesterenko, “An order function for almost all numbers”, Math. Notes, 15:3 (1974), 234–240 | DOI | MR | Zbl | Zbl

[5] P. R. Halmos, Measure theory, Nostrand, New York; Macmillan, London, 1950 | MR | MR | Zbl

[6] Yu. V. Nesterenko, “Measure of algebraic independence for almost all pairs of $p$-adic numbers”, Math. Notes, 36:3 (1984), 642–647 | DOI | MR | Zbl

[7] G. V. Chudnovsky, Contributions to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl

[8] F. Amoroso, “Polynomials with high multiplicity”, Acta Arith., 56:4 (1990), 345–364 | MR | Zbl

[9] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl

[10] Yu. V. Nesterenko, “On the measure of algebraic independence of the values of Ramanujan functions”, Proc. Steklov Inst. Math., 218 (1997), 294–331 | MR | Zbl

[11] Yu. V. Nesterenko, “Otsenki chisla nulei funktsii nekotorykh klassov”, Acta Arith., 53:1 (1989), 29–46 | MR | Zbl

[12] Yu. V. Nesterenko, “Estimates for the characteristic function of a prime ideal”, Math. USSR-Sb., 51:1 (1985), 9–32 | DOI | MR | Zbl

[13] O. Zariski, P. Samuel, Commutative algebra, vol. 2, Nostrand, Princeton–Toronto–New York–London, 1958 | MR | Zbl | Zbl