Calculating Cartan spaces for affine homogeneous spaces
Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1407-1431 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a connected reductive algebraic group and $H$ a reductive subgroup of it. Fix a Borel subgroup $B$ of $G$ and a maximal torus $T\subset B$. The Cartan subspace $\mathfrak a_{G,G/H}$ is by definition a subspace of $\mathfrak t^*$ (where $\mathfrak t$ is the Lie algebra of the group $T$) spanned by the weights of all the $B$-semi-invariant rational functions on $G/H$. The spaces $\mathfrak a_{G,G/H}$ are calculated in this paper. Bibliography: 16 titles.
@article{SM_2007_198_10_a1,
     author = {I. V. Losev},
     title = {Calculating {Cartan} spaces for affine homogeneous spaces},
     journal = {Sbornik. Mathematics},
     pages = {1407--1431},
     year = {2007},
     volume = {198},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_10_a1/}
}
TY  - JOUR
AU  - I. V. Losev
TI  - Calculating Cartan spaces for affine homogeneous spaces
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1407
EP  - 1431
VL  - 198
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_10_a1/
LA  - en
ID  - SM_2007_198_10_a1
ER  - 
%0 Journal Article
%A I. V. Losev
%T Calculating Cartan spaces for affine homogeneous spaces
%J Sbornik. Mathematics
%D 2007
%P 1407-1431
%V 198
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2007_198_10_a1/
%G en
%F SM_2007_198_10_a1
I. V. Losev. Calculating Cartan spaces for affine homogeneous spaces. Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1407-1431. http://geodesic.mathdoc.fr/item/SM_2007_198_10_a1/

[1] Th. Vust, “Plongements d'espaces symétriques algébriques: une classification”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17:2 (1990), 165–195 | MR | Zbl

[2] F. Knop, “Weylgruppe und Momentabbildung”, Invent. Math., 99:1 (1990), 1–23 | DOI | MR | Zbl

[3] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic geometry IV. Linear algebraic groups, invariant theory, Encyclopedia Math. Sci., 55, 1994, 123–278 | MR | Zbl | Zbl

[4] E. M. Andreev, É. B. Vinberg, A. G. Élashvili, “Orbits of greatest dimension in semi-simple linear Lie groups”, Funct. Anal. Appl., 1:4 (1967), 257–261 | DOI | MR | Zbl

[5] A. G. Élashvili, “Canonical form and stationary subalgebras of points of general position for simple linear Lie groups”, Funct. Anal. Appl., 6:1 (1972), 44–53 | DOI | MR | Zbl

[6] E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras”, Amer. Math. Soc. Transl., 6 (1957), 111–243 | MR | Zbl | Zbl

[7] A. G. Élashvili, “Stationary subalgebras of points of the common state for irreducible linear Lie groups”, Funct. Anal. Appl., 6:2 (1972), 139–148 | DOI | MR | Zbl

[8] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects Math., Vieweg, Braunschweig, 1984 | MR | MR | Zbl | Zbl

[9] G. W. Schwarz, “Representations of simple Lie groups with regular rings of invariants”, Invent. Math., 49:2 (1978), 167–191 | DOI | MR | Zbl

[10] M. Krämer, “Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen”, Compositio Math., 38:2 (1979), 129–153 | MR | Zbl

[11] D. Panyushev, “On homogeneous spaces of rank one”, Indag. Math. (N.S.), 6:3 (1995), 315–323 | DOI | MR | Zbl

[12] M. Brion, “Classification des espaces homogènes sphériques”, Compositio Math., 63:2 (1987), 189–208 | MR | Zbl

[13] I. V. Mikityuk, “On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces”, Math. USSR-Sb., 57:2, 527–546 | DOI | MR | Zbl | Zbl

[14] O. Yakimova, Gelfand pairs, Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn (Bonn, 2004), Bonner Math. Schriften, 374, Universität Bonn, Mathematisches Institut, Bonn, 2005 | MR | Zbl

[15] I. V. Arzhantsev, O. V. Chuvashova, “Classification of affine homogeneous spaces of complexity one”, Sb. Math., 195:6 (2004), 765–782 | DOI | MR | Zbl

[16] A. L. Onishchik, E. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl