$D_\infty$-differential $E_\infty$-algebras and spectral sequences of fibrations
Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1379-1406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of an $E_\infty$-algebra with a filtration is introduced. The connections are established between $E_\infty$-algebras with filtrations and the theory of $D_\infty$-differential $E_\infty$-algebras over fields. Based on the technique of $D_\infty$-differential $E_\infty$-algebras, the apparatus of spectral sequences is developed for $E_\infty$-algebras with filtrations, and applications of this apparatus to the multiplicative cohomology spectral sequences of fibrations are given. Bibliography: 21 titles.
@article{SM_2007_198_10_a0,
     author = {S. V. Lapin},
     title = {$D_\infty$-differential $E_\infty$-algebras and spectral sequences of fibrations},
     journal = {Sbornik. Mathematics},
     pages = {1379--1406},
     year = {2007},
     volume = {198},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2007_198_10_a0/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - $D_\infty$-differential $E_\infty$-algebras and spectral sequences of fibrations
JO  - Sbornik. Mathematics
PY  - 2007
SP  - 1379
EP  - 1406
VL  - 198
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2007_198_10_a0/
LA  - en
ID  - SM_2007_198_10_a0
ER  - 
%0 Journal Article
%A S. V. Lapin
%T $D_\infty$-differential $E_\infty$-algebras and spectral sequences of fibrations
%J Sbornik. Mathematics
%D 2007
%P 1379-1406
%V 198
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2007_198_10_a0/
%G en
%F SM_2007_198_10_a0
S. V. Lapin. $D_\infty$-differential $E_\infty$-algebras and spectral sequences of fibrations. Sbornik. Mathematics, Tome 198 (2007) no. 10, pp. 1379-1406. http://geodesic.mathdoc.fr/item/SM_2007_198_10_a0/

[1] J. Leray, “L'anneau spectral et l'anneau filtré d'homologie d'un espace localement compact et d'une application continue”, J. Math. Pures Appl. (9), 29 (1950), 1–139 | MR | Zbl

[2] J.-P. Serre, “Homologie singulière des espaces fibrés. Applications”, Ann. of Math. (2), 54:3 (1951), 425–505 | DOI | MR | Zbl

[3] V. A. Smirnov, “On the cochain complex of topological spaces”, Math. USSR-Sb., 43:1 (1982), 133–144 | DOI | MR | Zbl

[4] V. A. Smirnov, “Homotopy theory of coalgebras”, Math. USSR-Izv., 27:3 (1986), 575–592 | DOI | MR | Zbl | Zbl

[5] V. A. Smirnov, Simplicial and operad methods in algebraic topology, Transl. Math. Monogr., 198, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[6] S. V. Lapin, “Differential perturbations and $D_\infty$-differential modules”, Sb. Math., 192:11 (2001), 1639–1659 | DOI | MR | Zbl

[7] S. V. Lapin, “$D_\infty$-differential $A_\infty$-algebras and spectral sequences”, Sb. Math., 193:1 (2002), 119–142 | DOI | MR | Zbl

[8] S. V. Lapin, “$(DA)_\infty$-modules over $(DA)_\infty$-algebras and spectral sequences”, Izv. Math., 66:3 (2002), 543–568 | DOI | MR | Zbl

[9] S. V. Lapin, “$D_\infty$-differentials and $A_\infty$-structures in spectral sequences”, J. Math. Sci. (N. Y.), 123:4 (2004), 4221–4254 | DOI | MR | Zbl

[10] S. V. Lapin, “$D_\infty$-differential $E_\infty$-algebras and multiplicative spectral sequences”, Sb. Math., 196:11 (2005), 1627–1658 | DOI | MR

[11] J. P. May, Simplicial objects in algebraic topology, Nostrand, Princeton, NJ–Toronto, ON–London, 1967 | MR | Zbl

[12] V. A. Smirnov, “Homology of $B$-constructions and of co-$B$-constructions”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 79–95 | DOI | MR | Zbl

[13] V. A. Smirnov, “Lie algebras over operads and their applications in homotopy theory”, Izv. Math., 62:3 (1998), 549–580 | DOI | MR | Zbl

[14] V. K. A. M. Gugenheim, L. A. Lambe, “Perturbation theory in differential homological algebra. I”, Illinois J. Math., 33:4 (1989), 566–582 | MR | Zbl

[15] V. K. A. M. Gugenheim, L. A. Lambe, J. D. Stasheff, “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl

[16] V. K. A. M. Gugenheim, J. D. Stasheff, “On perturbations and $A_\infty$-structures”, Bull. Soc. Math. Belg. Sér. A, 38 (1986), 237–246 | MR | Zbl

[17] D. G. Quillen, Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | DOI | MR | Zbl

[18] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | MR | Zbl | Zbl

[19] E. H. Brown, jr., “Twisted tensor products. I”, Ann. of Math. (2), 69:1 (1959), 223–240 | DOI | MR | Zbl

[20] T. V. Kadeishvili, “On the homology theory of fibre spaces”, Russian Math. Surveys, 35:3 (1980), 231–238 | DOI | MR | Zbl

[21] V. A. Smirnov, “Homology of fibre spaces”, Russian Math. Surveys, 35:3 (1980), 294–298 | DOI | MR | Zbl | Zbl