Best approximation problems
Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1353-1364

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of the best approximation of bounded continuous functions on a topological space $X\times X$ by functions of the form $u(x)-u(y)$ are considered. Formulae for the values of the best approximations are obtained and the equivalence between the existence of precise solutions and the non-emptiness of the constraint set of the auxiliary dual Monge–Kantorovich problem with a special cost function is established. The form of precise solutions is described in terms relating to the Monge–Kantorovich duality, and for several classes of approximated functions the existence of precise solutions with additional properties, such as smoothness and periodicity, is proved. Bibliography: 20 titles.
@article{SM_2006_197_9_a5,
     author = {V. L. Levin},
     title = {Best approximation problems},
     journal = {Sbornik. Mathematics},
     pages = {1353--1364},
     publisher = {mathdoc},
     volume = {197},
     number = {9},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a5/}
}
TY  - JOUR
AU  - V. L. Levin
TI  - Best approximation problems
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1353
EP  - 1364
VL  - 197
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_9_a5/
LA  - en
ID  - SM_2006_197_9_a5
ER  - 
%0 Journal Article
%A V. L. Levin
%T Best approximation problems
%J Sbornik. Mathematics
%D 2006
%P 1353-1364
%V 197
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_9_a5/
%G en
%F SM_2006_197_9_a5
V. L. Levin. Best approximation problems. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1353-1364. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a5/