Best approximation problems
Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1353-1364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Problems of the best approximation of bounded continuous functions on a topological space $X\times X$ by functions of the form $u(x)-u(y)$ are considered. Formulae for the values of the best approximations are obtained and the equivalence between the existence of precise solutions and the non-emptiness of the constraint set of the auxiliary dual Monge–Kantorovich problem with a special cost function is established. The form of precise solutions is described in terms relating to the Monge–Kantorovich duality, and for several classes of approximated functions the existence of precise solutions with additional properties, such as smoothness and periodicity, is proved. Bibliography: 20 titles.
@article{SM_2006_197_9_a5,
     author = {V. L. Levin},
     title = {Best approximation problems},
     journal = {Sbornik. Mathematics},
     pages = {1353--1364},
     year = {2006},
     volume = {197},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a5/}
}
TY  - JOUR
AU  - V. L. Levin
TI  - Best approximation problems
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1353
EP  - 1364
VL  - 197
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_9_a5/
LA  - en
ID  - SM_2006_197_9_a5
ER  - 
%0 Journal Article
%A V. L. Levin
%T Best approximation problems
%J Sbornik. Mathematics
%D 2006
%P 1353-1364
%V 197
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2006_197_9_a5/
%G en
%F SM_2006_197_9_a5
V. L. Levin. Best approximation problems. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1353-1364. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a5/

[1] V. L. Levin, “Topics in the duality theory for mass transfer problem”, Distributions with given marginals and moment problems, eds. V. Benes̆, J. S̆tĕpán, Kluwer Acad. Publ., Dordrecht, 1997, 243–252 | MR | Zbl

[2] V. L. Levin, “General Monge–Kantorovich problem and its applications in measure theory and mathematical economics”, Functional analysis, optimization, and mathematical economics, A collection of papers dedicated to memory of L. V. Kantorovich, ed. L. J. Leifman, Oxford Univ. Press, Oxford, NY, 1990, 141–176 | MR | Zbl

[3] V. L. Levin, “K teorii dvoistvennosti dlya netopologicheskikh variantov zadachi o peremeschenii mass”, Matem. sb., 188:4 (1997), 95–126 | MR | Zbl

[4] E. G. Golshtein, Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971 | MR | Zbl

[5] V. L. Levin, Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985 | MR | Zbl

[6] P.-Zh. Loran, Approksimatsiya i optimizatsiya, Mir, M., 1975 | MR | Zbl

[7] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, MGU, M., 1976 | MR

[8] S. Ya. Khavinson, “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\phi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 33:3 (1969), 650–665 | MR | Zbl

[9] V. L. Levin, “Reduced cost functions and their applications”, J. Math. Econom., 28:2 (1997), 155–186 | DOI | MR | Zbl

[10] L. V. Kantorovich, “O peremeschenii mass”, Dokl. AN SSSR, 37:7–8 (1942), 199–201 | MR | Zbl

[11] L. V. Kantorovich, “Ob odnoi probleme Monzha”, UMN, 3:2 (1948), 225–226

[12] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom prostranstve vpolne additivnykh funktsii”, Vestn. LGU. Ser. matem., mekh., astron., 13:7 (1958), 52–59 | MR | Zbl

[13] V. L. Levin, A. A. Milyutin, “Zadacha o peremeschenii mass s razryvnoi funktsiei stoimosti i massovaya postanovka problemy dvoistvennosti vypuklykh ekstremalnykh zadach”, UMN, 34:3 (1979), 3–68 | MR | Zbl

[14] V. L. Levin, “The Monge–Kantorovich problems and stochastic preference relations”, Adv. Math. Econom., 3 (2001), 97–124 | MR | Zbl

[15] V. L. Levin, “Formula dlya optimalnogo znacheniya zadachi Monzha–Kantorovicha s gladkoi funktsiei stoimosti i kharakterizatsiya tsiklicheski monotonnykh otobrazhenii”, Matem. sb., 181:12 (1990), 1694–1709 | MR | Zbl

[16] V. L. Levin, “A superlinear multifunction arising in connection with mass transfer problems”, Set-Valued Anal., 4 (1996), 41–65 | DOI | MR | Zbl

[17] A. Ionescu Tulcéa, C. Ionescu Tulcéa, Topics in the theory of lifting, Springer-Verlag, Berlin, 1969 | MR | Zbl

[18] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR | Zbl

[19] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M, 1962 | MR | MR | Zbl

[20] A. Veil, Integrirovanie v topologicheskikh gruppakh i ego primeneniya, IL, M., 1950 | MR | Zbl