Lagrangian asymptotic behaviour of solutions of inhomogeneous systems
Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1341-1351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem under consideration concerns when a system of ordinary differential equations reducible to a weakly non-linear system has solutions with the same asymptotic behaviour as solutions of the corresponding homogeneous system. The existence and uniqueness of global solutions to the inhomogeneous system is established in the form of a solution to a homogeneous system of differential equations, in the case when asymptotic initial data is prescribed at the singular points of these systems. Bibliography: 6 titles.
@article{SM_2006_197_9_a4,
     author = {L. D. Kudryavtsev},
     title = {Lagrangian asymptotic behaviour of solutions of inhomogeneous systems},
     journal = {Sbornik. Mathematics},
     pages = {1341--1351},
     year = {2006},
     volume = {197},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a4/}
}
TY  - JOUR
AU  - L. D. Kudryavtsev
TI  - Lagrangian asymptotic behaviour of solutions of inhomogeneous systems
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1341
EP  - 1351
VL  - 197
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_9_a4/
LA  - en
ID  - SM_2006_197_9_a4
ER  - 
%0 Journal Article
%A L. D. Kudryavtsev
%T Lagrangian asymptotic behaviour of solutions of inhomogeneous systems
%J Sbornik. Mathematics
%D 2006
%P 1341-1351
%V 197
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2006_197_9_a4/
%G en
%F SM_2006_197_9_a4
L. D. Kudryavtsev. Lagrangian asymptotic behaviour of solutions of inhomogeneous systems. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1341-1351. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a4/

[1] L. D. Kudryavtsev, “Asimptotika reshenii differentsialnykh uravnenii vblizi singulyarnykh tochek”, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, M., 2001, 194–217 | MR | Zbl

[2] L. D. Kudryavtsev, “Polinomialnaya stabilizatsiya i ee prilozheniya v teorii obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 29:9 (1993), 1486–1503 | MR | Zbl

[3] L. D. Kudryavtsev, “Stabilizatsionnye zadachi dlya obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 29:12 (1993), 2056–2078 | MR | Zbl

[4] L. D. Kudryavtsev, “Pochti normirovannye prostranstva funktsii s polinomialnoi asimptotikoi”, Matem. sb., 194:1 (2003), 103–120 | MR | Zbl

[5] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl

[6] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | MR | Zbl