Uniqueness of Steiner minimal trees on boundaries
Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1309-1340
Voir la notice de l'article provenant de la source Math-Net.Ru
The following result is proved: there exists an open dense subset $U$
of $\mathbb R^{2n}$ such that each $P\in U$
(regarded as an enumerated subset of the standard Euclidean
plane $\mathbb R^2$) is spanned by a unique Steiner
minimal tree, that is, a shortest non-degenerate network.
Several interesting consequences are also obtained: in
particular, it is proved that each planar Steiner tree is
planar equivalent to a Steiner minimal tree.
Bibliography: 11 titles.
@article{SM_2006_197_9_a3,
author = {A. O. Ivanov and A. A. Tuzhilin},
title = {Uniqueness of {Steiner} minimal trees on boundaries},
journal = {Sbornik. Mathematics},
pages = {1309--1340},
publisher = {mathdoc},
volume = {197},
number = {9},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a3/}
}
A. O. Ivanov; A. A. Tuzhilin. Uniqueness of Steiner minimal trees on boundaries. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1309-1340. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a3/