Uniqueness of Steiner minimal trees on boundaries
Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1309-1340

Voir la notice de l'article provenant de la source Math-Net.Ru

The following result is proved: there exists an open dense subset $U$ of $\mathbb R^{2n}$ such that each $P\in U$ (regarded as an enumerated subset of the standard Euclidean plane $\mathbb R^2$) is spanned by a unique Steiner minimal tree, that is, a shortest non-degenerate network. Several interesting consequences are also obtained: in particular, it is proved that each planar Steiner tree is planar equivalent to a Steiner minimal tree. Bibliography: 11 titles.
@article{SM_2006_197_9_a3,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Uniqueness of  {Steiner} minimal trees on  boundaries},
     journal = {Sbornik. Mathematics},
     pages = {1309--1340},
     publisher = {mathdoc},
     volume = {197},
     number = {9},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a3/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Uniqueness of  Steiner minimal trees on  boundaries
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1309
EP  - 1340
VL  - 197
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_9_a3/
LA  - en
ID  - SM_2006_197_9_a3
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Uniqueness of  Steiner minimal trees on  boundaries
%J Sbornik. Mathematics
%D 2006
%P 1309-1340
%V 197
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_9_a3/
%G en
%F SM_2006_197_9_a3
A. O. Ivanov; A. A. Tuzhilin. Uniqueness of  Steiner minimal trees on  boundaries. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1309-1340. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a3/