@article{SM_2006_197_9_a3,
author = {A. O. Ivanov and A. A. Tuzhilin},
title = {Uniqueness of {Steiner} minimal trees on boundaries},
journal = {Sbornik. Mathematics},
pages = {1309--1340},
year = {2006},
volume = {197},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a3/}
}
A. O. Ivanov; A. A. Tuzhilin. Uniqueness of Steiner minimal trees on boundaries. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1309-1340. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a3/
[1] A. O. Ivanov, A. A. Tuzhilin, Minimal networks. The Steiner problem and its generalizations, CRC Press, Boca Raton, FL, 1994 | MR | Zbl
[2] A. O. Ivanov, A. A. Tuzhilin, Razvetvlennye geodezicheskie. Geometricheskaya teoriya lokalno minimalnykh setei, The Edwin Mellen Press, Lewiston, NY, 1999
[3] A. O. Ivanov, A. A. Tuzhilin, Branching solutions to one-dimensional variational problems, World Sci. Publ., River Edge, NJ, 2001 | MR | Zbl
[4] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, In-t kompyuternykh issledovanii, M., Izhevsk, 2003
[5] F. K. Hwang, D. Richards, P. Winter, The Steiner tree problem, Ann. Discrete Math., 53, North-Holland, Amsterdam, 1992 | MR | Zbl
[6] D. Cieslik, Steiner minimal trees, Kluwer Acad. Publ., Dordrecht, 1998 | MR | Zbl
[7] S. Hildebrandt, A. Tromba, The parsimonious universe, Copernicus, New York, 1996 | MR | Zbl
[8] Z. A. Melzak, Companion to concrete mathematics, Wiley, New York, 1973 | MR | Zbl
[9] A. O. Ivanov, A. A. Tuzhilin, “Differentsialnoe ischislenie na prostranstve minimalnykh derevev Shteinera v rimanovykh mnogoobraziyakh”, Matem. sb., 192:6 (2001), 31–50 | MR | Zbl
[10] A. O. Ivanov, A. A. Tuzhilin, D. Tsislik, “Otnoshenie Shteinera dlya rimanovykh mnogoobrazii”, UMN, 55:6 (2000), 139–140 | MR | Zbl
[11] A. O. Ivanov, A. A. Tuzhilin, D. Tsislik, “Otnoshenie Shteinera dlya mnogoobrazii”, Matem. zametki, 74:3 (2003), 387–395 | MR | Zbl