Localization of the extended stochastic integral
Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1273-1295

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for the localization of the extended stochastic integral with respect to a Gaussian measure in an infinite-dimensional space is presented. In the finite-dimensional case, for a vector field $v$ in the Sobolev class a condition ensuring the vanishing divergence of $v$ at the zero set of the field itself is presented. Bibliography: 12 titles.
@article{SM_2006_197_9_a1,
     author = {A. M. Gomilko and A. A. Dorogovtsev},
     title = {Localization of the extended stochastic integral},
     journal = {Sbornik. Mathematics},
     pages = {1273--1295},
     publisher = {mathdoc},
     volume = {197},
     number = {9},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a1/}
}
TY  - JOUR
AU  - A. M. Gomilko
AU  - A. A. Dorogovtsev
TI  - Localization of the extended stochastic integral
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1273
EP  - 1295
VL  - 197
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_9_a1/
LA  - en
ID  - SM_2006_197_9_a1
ER  - 
%0 Journal Article
%A A. M. Gomilko
%A A. A. Dorogovtsev
%T Localization of the extended stochastic integral
%J Sbornik. Mathematics
%D 2006
%P 1273-1295
%V 197
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_9_a1/
%G en
%F SM_2006_197_9_a1
A. M. Gomilko; A. A. Dorogovtsev. Localization of the extended stochastic integral. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1273-1295. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a1/