Localization of the extended stochastic integral
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1273-1295
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A sufficient condition for the localization of the extended stochastic
integral with respect to a Gaussian measure in an infinite-dimensional
space is presented. In the finite-dimensional case, for a
vector field $v$ in the Sobolev class a
condition ensuring the  vanishing divergence of $v$ at the
zero set of the field itself is presented.
Bibliography: 12 titles.
			
            
            
            
          
        
      @article{SM_2006_197_9_a1,
     author = {A. M. Gomilko and A. A. Dorogovtsev},
     title = {Localization of the extended stochastic integral},
     journal = {Sbornik. Mathematics},
     pages = {1273--1295},
     publisher = {mathdoc},
     volume = {197},
     number = {9},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a1/}
}
                      
                      
                    A. M. Gomilko; A. A. Dorogovtsev. Localization of the extended stochastic integral. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1273-1295. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a1/
