Monotone path-connectedness of Chebyshev sets in the space~$C(Q)$
Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1259-1272

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of Chebyshev sets and strict suns in the space $C(Q)$ with compact $Q$ is considered. It is shown that a boundedly compact strict sun in $C(Q)$ (in particular, a bounded compact Chebyshev set) is monotone path-connected and in particular, $P$-acyclic. It is demonstrated that a monotone path-connected Chebyshev set in $C(Q)$ is a sun. Bibliography: 25 titles.
@article{SM_2006_197_9_a0,
     author = {A. R. Alimov},
     title = {Monotone path-connectedness of {Chebyshev} sets in the space~$C(Q)$},
     journal = {Sbornik. Mathematics},
     pages = {1259--1272},
     publisher = {mathdoc},
     volume = {197},
     number = {9},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Monotone path-connectedness of Chebyshev sets in the space~$C(Q)$
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1259
EP  - 1272
VL  - 197
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_9_a0/
LA  - en
ID  - SM_2006_197_9_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Monotone path-connectedness of Chebyshev sets in the space~$C(Q)$
%J Sbornik. Mathematics
%D 2006
%P 1259-1272
%V 197
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_9_a0/
%G en
%F SM_2006_197_9_a0
A. R. Alimov. Monotone path-connectedness of Chebyshev sets in the space~$C(Q)$. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1259-1272. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a0/