@article{SM_2006_197_9_a0,
author = {A. R. Alimov},
title = {Monotone path-connectedness of {Chebyshev} sets in the space~$C(Q)$},
journal = {Sbornik. Mathematics},
pages = {1259--1272},
year = {2006},
volume = {197},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a0/}
}
A. R. Alimov. Monotone path-connectedness of Chebyshev sets in the space $C(Q)$. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1259-1272. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a0/
[1] L. P. Vlasov, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl
[2] V. S. Balaganskii, L. P. Vlasov, “Problema vypuklosti chebyshëvskikh mnozhestv”, UMN, 51:6 (1996), 125–188 | MR | Zbl
[3] M. I. Karlov, I. G. Tsarkov, “Vypuklost i svyaznost chebyshëvskikh mnozhestv i solnts”, Fundam. i prikl. matem., 3:4 (1997), 967–978 | MR | Zbl
[4] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl
[5] B. Brosowski, F. Deutsch, J. Lambert, P. D. Morris, “Chebyshev sets which are not suns”, Math. Ann., 212:2 (1974), 89–101 | DOI | MR | Zbl
[6] H. Berens, L. Hetzelt, “Die Metrische Struktur der Sonnen in $\ell_\infty(n)$”, Aequationes Math., 27 (1984), 274–287 | DOI | MR | Zbl
[7] D. Braess, “Geometrical characterizations for nonlinear uniform approximation”, J. Approx. Theory, 11:3 (1974), 260–274 | DOI | MR | Zbl
[8] A. R. Alimov, “Svyaznost solnts v $c_0$”, Izv. RAN. Ser. matem., 69:4 (2005), 3–18 | MR | Zbl
[9] A. R. Alimov, “Geometricheskoe stroenie chebyshëvskikh mnozhestv v $\ell^\infty(n)$”, Funkts. analiz i ego prilozh., 39:1 (2005), 1–10 | MR | Zbl
[10] A. R. Alimov, “Characterisations of Chebyshev sets in $c_0$”, J. Approx. Theory, 129:2 (2004), 217–229 | DOI | MR | Zbl
[11] A. R. Alimov, “Geometricheskaya kharakterizatsiya strogikh solnts v $\ell^\infty(n)$”, Matem. zametki, 70:1 (2001), 3–11 | MR | Zbl
[12] A. R. Alimov, “Geometricheskoe stroenie chebyshëvskikh mnozhestv v prostranstvakh $\ell^\infty(n)$, $c_0$ i $c$”, UMN, 60:3 (2005), 171–172 | MR
[13] K. Menger, “Untersuchungen über allgemeine Metrik”, Math. Ann., 100:1 (1928), 75–163 | DOI | MR | Zbl
[14] J. Andres, G. Gabor, L. Górniewicz, “Acyclicity of solution sets to functional inclusions”, Nonlinear Anal., 49:5 (2002), 671–688 | DOI | MR | Zbl
[15] Ch. B. Dunham, “Chebyshev sets in $C[0,1]$ which are not suns”, Canad. Math. Bull., 18 (1975), 35–37 | MR | Zbl
[16] A. L. Brown, “Suns in polyhedral spaces”, Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), eds. D. G. Álvarez, G. Lopez Acedo and R. V. Caro, Universidad de Sevilla, Sevilla, 2003, 139–146 | MR | Zbl
[17] A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces”, Functional analysis and optimization, Workshop/Miniconference (Canberra, Australia, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988, 1–15 | MR | Zbl
[18] V. A. Koscheev, “Svyaznost i approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 17:2 (1975), 193–204 | MR | Zbl
[19] V. A. Koscheev, “Svyaznost i solnechnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 19:2 (1976), 267–278 | MR | Zbl
[20] V. A. Koscheev, “Primer nesvyaznogo solntsa v banakhovom prostranstve”, Matem. zametki, 26:1 (1979), 89–92 | MR | Zbl
[21] D. E. Wulbert, “Continuity of metric projections”, Trans. Amer. Math. Soc., 134:2 (1968), 335–341 | DOI | MR | Zbl
[22] S. V. Konyagin, “Svyaznost mnozhestv v zadachakh nailuchshego priblizheniya”, Dokl. AN SSSR, 261:1 (1981), 20–23 | MR | Zbl
[23] I. G. Tsarkov, “O svyaznosti nekotorykh klassov mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 40:2 (1986), 174–196 | MR | Zbl
[24] A. A. Vasileva, “Zamknutye promezhutki v $C(T)$ i $L_\varphi(T)$ i ikh approksimativnye svoistva”, Matem. zametki, 73:1 (2003), 135–138 | MR | Zbl
[25] A. A. Vasileva, “Zamknutye promezhutki v vektornoznachnykh funktsionalnykh prostranstvakh i ikh approksimativnye svoistva”, Izv. RAN. Ser. matem., 68:4 (2004), 75–116 | MR | Zbl