Monotone path-connectedness of Chebyshev sets in the space~$C(Q)$
Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1259-1272
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure of Chebyshev
sets and strict suns in the space $C(Q)$ with compact $Q$ is considered.
It is shown that a boundedly compact strict
sun in $C(Q)$ (in particular, a bounded compact Chebyshev set)
is monotone path-connected and
in particular, $P$-acyclic.
It is demonstrated that a monotone path-connected
Chebyshev set in $C(Q)$ is a sun.
Bibliography: 25 titles.
@article{SM_2006_197_9_a0,
author = {A. R. Alimov},
title = {Monotone path-connectedness of {Chebyshev} sets in the space~$C(Q)$},
journal = {Sbornik. Mathematics},
pages = {1259--1272},
publisher = {mathdoc},
volume = {197},
number = {9},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_9_a0/}
}
A. R. Alimov. Monotone path-connectedness of Chebyshev sets in the space~$C(Q)$. Sbornik. Mathematics, Tome 197 (2006) no. 9, pp. 1259-1272. http://geodesic.mathdoc.fr/item/SM_2006_197_9_a0/