Hyperbolic Monge--Amp\`ere systems
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1223-1258

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of the paper is the solubility of the Cauchy problem for strictly hyperbolic systems of Monge–Ampère equations and, in particular, for quasilinear systems of equations with two independent variables. It is proved that this problem has a unique maximal solution in the class of immersed many-valued solutions. Maximal many-valued solutions have the following characteristic property of completeness: either the characteristics of distinct families starting at two fixed points in the initial curve in the compatible directions intersect or the lengths of the characteristics in either family starting in the same direction from the interval of the initial curve connecting the fixed points make up an unbounded set. The completeness property is an analogue of the property that a non-extendable integral curve of an ordinary differential equation approaches the boundary of the definition domain of the equation. Bibliography: 19 titles.
@article{SM_2006_197_8_a6,
     author = {D. V. Tunitsky},
     title = {Hyperbolic {Monge--Amp\`ere}  systems},
     journal = {Sbornik. Mathematics},
     pages = {1223--1258},
     publisher = {mathdoc},
     volume = {197},
     number = {8},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a6/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Hyperbolic Monge--Amp\`ere  systems
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1223
EP  - 1258
VL  - 197
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_8_a6/
LA  - en
ID  - SM_2006_197_8_a6
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Hyperbolic Monge--Amp\`ere  systems
%J Sbornik. Mathematics
%D 2006
%P 1223-1258
%V 197
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_8_a6/
%G en
%F SM_2006_197_8_a6
D. V. Tunitsky. Hyperbolic Monge--Amp\`ere  systems. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1223-1258. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a6/