Hyperbolic Monge–Ampère systems
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1223-1258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The subject of the paper is the solubility of the Cauchy problem for strictly hyperbolic systems of Monge–Ampère equations and, in particular, for quasilinear systems of equations with two independent variables. It is proved that this problem has a unique maximal solution in the class of immersed many-valued solutions. Maximal many-valued solutions have the following characteristic property of completeness: either the characteristics of distinct families starting at two fixed points in the initial curve in the compatible directions intersect or the lengths of the characteristics in either family starting in the same direction from the interval of the initial curve connecting the fixed points make up an unbounded set. The completeness property is an analogue of the property that a non-extendable integral curve of an ordinary differential equation approaches the boundary of the definition domain of the equation. Bibliography: 19 titles.
@article{SM_2006_197_8_a6,
     author = {D. V. Tunitsky},
     title = {Hyperbolic {Monge{\textendash}Amp\`ere} systems},
     journal = {Sbornik. Mathematics},
     pages = {1223--1258},
     year = {2006},
     volume = {197},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a6/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Hyperbolic Monge–Ampère systems
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1223
EP  - 1258
VL  - 197
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_8_a6/
LA  - en
ID  - SM_2006_197_8_a6
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Hyperbolic Monge–Ampère systems
%J Sbornik. Mathematics
%D 2006
%P 1223-1258
%V 197
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2006_197_8_a6/
%G en
%F SM_2006_197_8_a6
D. V. Tunitsky. Hyperbolic Monge–Ampère systems. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1223-1258. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a6/

[1] V. V. Lychagin, “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya vtorogo poryadka”, UMN, 34:1(205) (1979), 137–165 | MR | Zbl

[2] V. V. Lychagin, “Nelineinye differentsialnye uravneniya i kontaktnaya geometriya”, Dokl. AN SSSR, 238:2 (1978), 273–276 | MR | Zbl

[3] E. Kartan, Vneshnie differentsialnye sistemy i ikh geometricheskie prilozheniya, MGU, M., 1962 | MR | Zbl

[4] A. M. Vinogradov, “Mnogoznachnye resheniya i printsip klassifikatsii nelineinykh differentsialnykh uravnenii”, Dokl. AN SSSR, 210:1 (1973), 11–14 | MR | Zbl

[5] D. V. Tunitskii, “Mnogoznachnye resheniya giperbolicheskikh uravnenii Monzha–Ampera”, Differents. uravneniya, 29:12 (1993), 2178–2189 | MR | Zbl

[6] D. V. Tunitsky, “Hyperbolicity and multivalued solutions of Monge–Ampère equations”, The interplay between differential geometry and differential equations, Amer. Math. Soc. Transl. Ser. 2, 167, Amer. Math. Soc., Providence, RI, 1995, 245–260 | MR | Zbl

[7] S. I. Bilchev, “Sistemy iz dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo poryadka (lokalnaya teoriya)”, Izv. vuzov. Matem., 1970, no. 3, 14–21 | MR | Zbl

[8] A. M. Vasilev, Teoriya differentsialno-geometricheskikh struktur, MGU, M., 1986 | MR | Zbl

[9] D. V. Tunitskii, “Zadacha Koshi dlya giperbolicheskikh uravnenii Monzha–Ampera”, Izv. RAN. Ser. matem., 57:4 (1993), 174–191 | MR | Zbl

[10] M. Khirsh, Differentsialnaya topologiya, Mir, M., 1979 | MR | MR | Zbl

[11] F. Uorner, Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR | MR | Zbl

[12] I. Ya. Bakelman, A. L. Verner, B. E. Kantor, Vvedenie v differentsialnuyu geometriyu v “tselom”, Nauka, M., 1973 | MR | Zbl

[13] Lewy H., “Über das Anfangswertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhangigen Veränderlichen”, Math. Ann., 98 (1928), 179–191 | DOI | MR | Zbl

[14] P. Hartman, A. Wintner, “On hyperbolic partial differential equations”, Amer. J. Math., 74 (1952), 834–864 | DOI | MR | Zbl

[15] L. S. Pontryagin, Obyknovennye differentsialnye uravneniya, Nauka, M., 1982 | MR | Zbl

[16] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | MR | Zbl

[17] S. Leng, Vvedenie v teoriyu diferentsiruemykh mnogoobrazii, Mir, M., 1967 | MR | Zbl

[18] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR

[19] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl