Deficiency numbers of symmetric operators generated
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1177-1203
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Symmetric block Jacobi matrices $J$ and the corresponding 
symmetric operators $L$ are studied. Let $m$ be the size of the blocks in the matrix $J$. 
As is known, the deficiency numbers $m_+$ and $m_-$ of the operator $L$
satisfy the inequalities $0\leqslant m_+,m_-\leqslant m$ and achieve their maximum value $m$ simultaneously. Let $m_+$ and $m_-$ be arbitrary integers such that 
$0\leqslant m_+,m_-\leqslant m-1$.
It is shown that there exists a symmetric Jacobi matrix $J$ such that $m_+$ 
and $m_-$ are the deficiency numbers of the corresponding symmetric operator $L$.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_2006_197_8_a4,
     author = {Yu. M. Dyukarev},
     title = {Deficiency numbers of symmetric operators generated},
     journal = {Sbornik. Mathematics},
     pages = {1177--1203},
     publisher = {mathdoc},
     volume = {197},
     number = {8},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a4/}
}
                      
                      
                    Yu. M. Dyukarev. Deficiency numbers of symmetric operators generated. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1177-1203. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a4/
