Deficiency numbers of symmetric operators generated
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1177-1203

Voir la notice de l'article provenant de la source Math-Net.Ru

Symmetric block Jacobi matrices $J$ and the corresponding symmetric operators $L$ are studied. Let $m$ be the size of the blocks in the matrix $J$. As is known, the deficiency numbers $m_+$ and $m_-$ of the operator $L$ satisfy the inequalities $0\leqslant m_+,m_-\leqslant m$ and achieve their maximum value $m$ simultaneously. Let $m_+$ and $m_-$ be arbitrary integers such that $0\leqslant m_+,m_-\leqslant m-1$. It is shown that there exists a symmetric Jacobi matrix $J$ such that $m_+$ and $m_-$ are the deficiency numbers of the corresponding symmetric operator $L$. Bibliography: 13 titles.
@article{SM_2006_197_8_a4,
     author = {Yu. M. Dyukarev},
     title = {Deficiency numbers of symmetric operators generated},
     journal = {Sbornik. Mathematics},
     pages = {1177--1203},
     publisher = {mathdoc},
     volume = {197},
     number = {8},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a4/}
}
TY  - JOUR
AU  - Yu. M. Dyukarev
TI  - Deficiency numbers of symmetric operators generated
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1177
EP  - 1203
VL  - 197
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_8_a4/
LA  - en
ID  - SM_2006_197_8_a4
ER  - 
%0 Journal Article
%A Yu. M. Dyukarev
%T Deficiency numbers of symmetric operators generated
%J Sbornik. Mathematics
%D 2006
%P 1177-1203
%V 197
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_8_a4/
%G en
%F SM_2006_197_8_a4
Yu. M. Dyukarev. Deficiency numbers of symmetric operators generated. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1177-1203. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a4/