Inequalities for critical values of
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1167-1176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inequalities for the values of an algebraic polynomial $P$ of degree $n\geqslant2$ at zeros of its derivative $P'$ are obtained. In particular, a problem of Smale is solved: for polynomials of the form $P(z)=z^n+\dots+c_1z$ the maximum value of the quantity $\min\{|P(\zeta)|:P'(\zeta)=0\}$ is found in its dependence on the absolute value of $c_1$. The corresponding proof is based on the dissymmetrization of a certain real function defined on the Riemann surface of the inverse analytic function of the extremal polynomial $P^*(z)=z^n-z$. Bibliography: 10 titles.
@article{SM_2006_197_8_a3,
     author = {V. N. Dubinin},
     title = {Inequalities for critical values of},
     journal = {Sbornik. Mathematics},
     pages = {1167--1176},
     year = {2006},
     volume = {197},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Inequalities for critical values of
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1167
EP  - 1176
VL  - 197
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/
LA  - en
ID  - SM_2006_197_8_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Inequalities for critical values of
%J Sbornik. Mathematics
%D 2006
%P 1167-1176
%V 197
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/
%G en
%F SM_2006_197_8_a3
V. N. Dubinin. Inequalities for critical values of. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1167-1176. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/

[1] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ., Singapore, 1994 | MR | Zbl

[2] P. Borwein, T. Erdélyi, Polynomials and polynomial inequalities, Springer-Verlag, New York, 1995 | MR | Zbl

[3] Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Math. Soc. Monogr. (N.S.), 26, Clarendon Press, Oxford, 2002 | MR | Zbl

[4] S. Smale, “The fundamental theorem of algebra and complexity theory”, Bull. Amer. Math. Soc. (N.S.), 4:1 (1981), 1–36 | DOI | MR | Zbl

[5] D. Tischler, “Critical points and values of complex polynomials”, J. Complexity, 5:4 (1989), 438–456 | DOI | MR | Zbl

[6] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[7] A. F. Beardon, D. Minda, T. W. Ng, “Smale's mean value conjecture and the hyperbolic metric”, Math. Ann., 322:4 (2002), 623–632 | DOI | MR | Zbl

[8] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, t. 1, 2, IL, M., 1962 | MR | MR | Zbl

[9] I. Schur, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 1:4 (1918), 377–402 | DOI | MR | Zbl

[10] V. N. Dubinin, “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Zapiski nauchn. sem. POMI, 237, 1997, 56–73 | MR | Zbl