Inequalities for critical values of
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1167-1176

Voir la notice de l'article provenant de la source Math-Net.Ru

Inequalities for the values of an algebraic polynomial $P$ of degree $n\geqslant2$ at zeros of its derivative $P'$ are obtained. In particular, a problem of Smale is solved: for polynomials of the form $P(z)=z^n+\dots+c_1z$ the maximum value of the quantity $\min\{|P(\zeta)|:P'(\zeta)=0\}$ is found in its dependence on the absolute value of $c_1$. The corresponding proof is based on the dissymmetrization of a certain real function defined on the Riemann surface of the inverse analytic function of the extremal polynomial $P^*(z)=z^n-z$. Bibliography: 10 titles.
@article{SM_2006_197_8_a3,
     author = {V. N. Dubinin},
     title = {Inequalities for critical values of},
     journal = {Sbornik. Mathematics},
     pages = {1167--1176},
     publisher = {mathdoc},
     volume = {197},
     number = {8},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Inequalities for critical values of
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1167
EP  - 1176
VL  - 197
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/
LA  - en
ID  - SM_2006_197_8_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Inequalities for critical values of
%J Sbornik. Mathematics
%D 2006
%P 1167-1176
%V 197
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/
%G en
%F SM_2006_197_8_a3
V. N. Dubinin. Inequalities for critical values of. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1167-1176. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/