Inequalities for critical values of
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1167-1176
Voir la notice de l'article provenant de la source Math-Net.Ru
Inequalities for the values of an algebraic polynomial $P$ of degree
$n\geqslant2$ at zeros of its derivative $P'$ are obtained. In particular,
a problem of Smale is solved: for polynomials of the form
$P(z)=z^n+\dots+c_1z$ the maximum value of the quantity
$\min\{|P(\zeta)|:P'(\zeta)=0\}$ is found in its dependence on the
absolute value of $c_1$. The corresponding proof is based on the
dissymmetrization of a certain real function defined on the Riemann
surface of the inverse analytic function of the extremal polynomial
$P^*(z)=z^n-z$.
Bibliography: 10 titles.
@article{SM_2006_197_8_a3,
author = {V. N. Dubinin},
title = {Inequalities for critical values of},
journal = {Sbornik. Mathematics},
pages = {1167--1176},
publisher = {mathdoc},
volume = {197},
number = {8},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/}
}
V. N. Dubinin. Inequalities for critical values of. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1167-1176. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a3/