Schur flows and orthogonal polynomials on the unit circle
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1145-1165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Connections between Toda lattices (Toda chains) and similar non-linear chains and the theory of orthogonal polynomials on the real axis have been studied in detail during the last decades. Another system of difference differential equations, known as the Schur flow, is considered in this paper in the framework of the theory of orthogonal polynomials on the unit circle. A Lax pair for this system is found and the dynamics of the corresponding spectral measure is described. The general result is illustrated by an example of Bessel modified measures on the unit circle: the large-time asymptotic behaviour of their reflection coefficients is determined. Bibliography: 23 titles.
@article{SM_2006_197_8_a2,
     author = {L. B. Golinskii},
     title = {Schur flows and orthogonal polynomials on the unit circle},
     journal = {Sbornik. Mathematics},
     pages = {1145--1165},
     year = {2006},
     volume = {197},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/}
}
TY  - JOUR
AU  - L. B. Golinskii
TI  - Schur flows and orthogonal polynomials on the unit circle
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1145
EP  - 1165
VL  - 197
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/
LA  - en
ID  - SM_2006_197_8_a2
ER  - 
%0 Journal Article
%A L. B. Golinskii
%T Schur flows and orthogonal polynomials on the unit circle
%J Sbornik. Mathematics
%D 2006
%P 1145-1165
%V 197
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/
%G en
%F SM_2006_197_8_a2
L. B. Golinskii. Schur flows and orthogonal polynomials on the unit circle. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1145-1165. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/

[1] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl

[2] J. Moser, “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Dynamical Systems. Theory and Application, Lecture Notes in Phys., 38, eds. J. Ehlers, K. Hepp, H. A. Weidenmüller, Springer, Berlin, 1975, 467–497 | MR | Zbl

[3] B. Simon, Orthogonal polynomials on the unit circle. Part 1: Classical theory, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[4] B. Simon, Orthogonal polynomials on the unit circle. Part 2: Spectral theory, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[5] Ya. L. Geronimus, Mnogochleny, ortogonalnye na okruzhnosti i na otrezke. Otsenki, asimptoticheskie formuly, ortogonalnye ryady, GIFML, M., 1958 | MR | Zbl

[6] M. J. Cantero, L. Moral, L. Velázquez, “Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle”, Linear Algebra Appl., 362 (2003), 29–56 | DOI | MR | Zbl

[7] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16 (1975), 598–603 | DOI | MR | Zbl

[8] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations and Fourier analysis”, J. Math. Phys., 17 (1976), 1011–1018 | DOI | MR | Zbl

[9] L. Faybusovich, M. Gekhtman, “On Schur flows”, J. Phys. A, 32 (1999), 4671–4680 | DOI | MR | Zbl

[10] G. S. Ammar, W. B. Gragg, “Schur flows for orthogonal Hessenberg matrices”, Hamiltonian and gradient flows, algorithms and control, Fields Inst. Commun., 3, Amer. Math. Soc., Providence, RI, 1994, 27–34 | MR | Zbl

[11] A. Mukaihira, Y. Nakamura, “Schur flow for orthogonal polynomials on the unit circle and its integrable discretization”, J. Comput. Appl. Math., 139:1 (2002), 75–94 | DOI | MR | Zbl

[12] A. Mukaihira, Y. Nakamura, “Integrable discretization of the modified KdV equation and applications”, Inverse Problems, 16 (2000), 413–424 | DOI | MR | Zbl

[13] I. Nenciu, “Lax pairs for the Ablowitz–Ladik system via orthogonal polynomials on the unit circle”, Internat. Math. Res. Notices, 2005:11 (2005), 647–686 | DOI | MR | Zbl

[14] R. Killip, I. Nenciu, CMV: the unitary analogue of Jacobi matrices, , 2005 arXiv: math.SG/0508113 | MR

[15] J. S. Geronimo, F. Gesztesy, H. Holden, “Algebro-geometric solution of the Baxter–Szegő difference equation”, Comm. Math. Phys., 258 (2005), 149–177 | DOI | MR | Zbl

[16] Yu. M. Berezanskii, “The integration of semi-infinite Toda chain by means of inverse spectral problem”, Rep. Math. Phys., 24:1 (1986), 21–47 | DOI | MR | Zbl

[17] M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia Math. Appl., 98, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[18] P. Nevai, V. Totik, “Orthogonal polynomials and their zeros”, Acta Sci. Math. (Szeged), 53 (1989), 99–104 | MR | Zbl

[19] J. Baik, P. Deift, K. Johansson, “On the distribution of the lenght of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc., 12 (1999), 1119–1178 | DOI | MR | Zbl

[20] V. Periwal, D. Shevitz, “Unitary-matrix models as exactly solvable string theories”, Phys. Rev. Lett., 64 (1990), 1326–1329 | DOI | MR

[21] P. Deift, L. C. Li, C. Tomei, “Toda flows with infinitely many variables”, J. Funct. Anal., 64 (1985), 358–402 | DOI | MR | Zbl

[22] L. Golinskii, A. Zlatoš, Coefficients of orthogonal polynomials on the unit circle and higher-order Szegő theorems, , 2005 arXiv: math.CA/0509192 | MR

[23] F. Olver, Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978 | MR | Zbl