Schur flows and orthogonal polynomials on the unit circle
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1145-1165

Voir la notice de l'article provenant de la source Math-Net.Ru

Connections between Toda lattices (Toda chains) and similar non-linear chains and the theory of orthogonal polynomials on the real axis have been studied in detail during the last decades. Another system of difference differential equations, known as the Schur flow, is considered in this paper in the framework of the theory of orthogonal polynomials on the unit circle. A Lax pair for this system is found and the dynamics of the corresponding spectral measure is described. The general result is illustrated by an example of Bessel modified measures on the unit circle: the large-time asymptotic behaviour of their reflection coefficients is determined. Bibliography: 23 titles.
@article{SM_2006_197_8_a2,
     author = {L. B. Golinskii},
     title = {Schur flows and orthogonal polynomials on the unit  circle},
     journal = {Sbornik. Mathematics},
     pages = {1145--1165},
     publisher = {mathdoc},
     volume = {197},
     number = {8},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/}
}
TY  - JOUR
AU  - L. B. Golinskii
TI  - Schur flows and orthogonal polynomials on the unit  circle
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1145
EP  - 1165
VL  - 197
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/
LA  - en
ID  - SM_2006_197_8_a2
ER  - 
%0 Journal Article
%A L. B. Golinskii
%T Schur flows and orthogonal polynomials on the unit  circle
%J Sbornik. Mathematics
%D 2006
%P 1145-1165
%V 197
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/
%G en
%F SM_2006_197_8_a2
L. B. Golinskii. Schur flows and orthogonal polynomials on the unit  circle. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1145-1165. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/