@article{SM_2006_197_8_a2,
author = {L. B. Golinskii},
title = {Schur flows and orthogonal polynomials on the unit circle},
journal = {Sbornik. Mathematics},
pages = {1145--1165},
year = {2006},
volume = {197},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/}
}
L. B. Golinskii. Schur flows and orthogonal polynomials on the unit circle. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1145-1165. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a2/
[1] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl
[2] J. Moser, “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Dynamical Systems. Theory and Application, Lecture Notes in Phys., 38, eds. J. Ehlers, K. Hepp, H. A. Weidenmüller, Springer, Berlin, 1975, 467–497 | MR | Zbl
[3] B. Simon, Orthogonal polynomials on the unit circle. Part 1: Classical theory, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[4] B. Simon, Orthogonal polynomials on the unit circle. Part 2: Spectral theory, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[5] Ya. L. Geronimus, Mnogochleny, ortogonalnye na okruzhnosti i na otrezke. Otsenki, asimptoticheskie formuly, ortogonalnye ryady, GIFML, M., 1958 | MR | Zbl
[6] M. J. Cantero, L. Moral, L. Velázquez, “Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle”, Linear Algebra Appl., 362 (2003), 29–56 | DOI | MR | Zbl
[7] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16 (1975), 598–603 | DOI | MR | Zbl
[8] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations and Fourier analysis”, J. Math. Phys., 17 (1976), 1011–1018 | DOI | MR | Zbl
[9] L. Faybusovich, M. Gekhtman, “On Schur flows”, J. Phys. A, 32 (1999), 4671–4680 | DOI | MR | Zbl
[10] G. S. Ammar, W. B. Gragg, “Schur flows for orthogonal Hessenberg matrices”, Hamiltonian and gradient flows, algorithms and control, Fields Inst. Commun., 3, Amer. Math. Soc., Providence, RI, 1994, 27–34 | MR | Zbl
[11] A. Mukaihira, Y. Nakamura, “Schur flow for orthogonal polynomials on the unit circle and its integrable discretization”, J. Comput. Appl. Math., 139:1 (2002), 75–94 | DOI | MR | Zbl
[12] A. Mukaihira, Y. Nakamura, “Integrable discretization of the modified KdV equation and applications”, Inverse Problems, 16 (2000), 413–424 | DOI | MR | Zbl
[13] I. Nenciu, “Lax pairs for the Ablowitz–Ladik system via orthogonal polynomials on the unit circle”, Internat. Math. Res. Notices, 2005:11 (2005), 647–686 | DOI | MR | Zbl
[14] R. Killip, I. Nenciu, CMV: the unitary analogue of Jacobi matrices, , 2005 arXiv: math.SG/0508113 | MR
[15] J. S. Geronimo, F. Gesztesy, H. Holden, “Algebro-geometric solution of the Baxter–Szegő difference equation”, Comm. Math. Phys., 258 (2005), 149–177 | DOI | MR | Zbl
[16] Yu. M. Berezanskii, “The integration of semi-infinite Toda chain by means of inverse spectral problem”, Rep. Math. Phys., 24:1 (1986), 21–47 | DOI | MR | Zbl
[17] M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia Math. Appl., 98, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl
[18] P. Nevai, V. Totik, “Orthogonal polynomials and their zeros”, Acta Sci. Math. (Szeged), 53 (1989), 99–104 | MR | Zbl
[19] J. Baik, P. Deift, K. Johansson, “On the distribution of the lenght of the longest increasing subsequence of random permutations”, J. Amer. Math. Soc., 12 (1999), 1119–1178 | DOI | MR | Zbl
[20] V. Periwal, D. Shevitz, “Unitary-matrix models as exactly solvable string theories”, Phys. Rev. Lett., 64 (1990), 1326–1329 | DOI | MR
[21] P. Deift, L. C. Li, C. Tomei, “Toda flows with infinitely many variables”, J. Funct. Anal., 64 (1985), 358–402 | DOI | MR | Zbl
[22] L. Golinskii, A. Zlatoš, Coefficients of orthogonal polynomials on the unit circle and higher-order Szegő theorems, , 2005 arXiv: math.CA/0509192 | MR
[23] F. Olver, Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978 | MR | Zbl