Discrete Torelli theorem
Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1109-1120
Cet article a éte moissonné depuis la source Math-Net.Ru
For an algebraic curve that has only simplest singularities and only rational irreducible components, the generalized Jacobian coincides with the moduli variety of topologically trivial linear bundles whose canonical compactification is a toric variety constructed from a convex integer polytope. The vertices of this polytope are the simple cycles in the one-dimensional rational homology space of the dual graph of this curve. It is proved that for three-connected graphs the simple cycle polytope uniquely determines the graph. Bibliography: 4 titles.
@article{SM_2006_197_8_a0,
author = {I. V. Artamkin},
title = {Discrete {Torelli} theorem},
journal = {Sbornik. Mathematics},
pages = {1109--1120},
year = {2006},
volume = {197},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_8_a0/}
}
I. V. Artamkin. Discrete Torelli theorem. Sbornik. Mathematics, Tome 197 (2006) no. 8, pp. 1109-1120. http://geodesic.mathdoc.fr/item/SM_2006_197_8_a0/
[1] A. N. Tyurin, Kvantovanie, klassicheskaya i kvantovaya teoriya polya i teta-funktsii, Institut kompyuternykh issledovanii, M., Izhevsk, 2003 | MR | Zbl
[2] I. V. Artamkin, “Topologicheski trivialnye puchki na krivykh s prosteishimi osobennostyami”, Algebraicheskaya geometriya. Metody, svyazi, i prilozheniya, Tr. MIAN, 246, 2004, 10–19 | MR | Zbl
[3] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR | MR | Zbl
[4] I. V. Artamkin, “Kanonicheskie otobrazheniya punktirovannykh krivykh s prosteishimi osobennostyami”, Matem. sb., 195:5 (2004), 3–32 | MR | Zbl