, it is shown that the rate of approximation of the boundary function in the $L^p$ metric by the generalized Riesz means $R_\varepsilon^{l,\alpha}(f,z)$, $\varepsilon>0$, $(l+1)p>1$, $(\alpha+1)p>1$, is equivalent to the modulus of smoothness of fractional order $l$. This is a known result in the case of positive integer $l$. Bibliography: 8 titles.
@article{SM_2006_197_7_a3,
author = {S. G. Pribegin},
title = {Approximation of functions in $H^p$, $0<p\le1$,},
journal = {Sbornik. Mathematics},
pages = {1025--1035},
year = {2006},
volume = {197},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a3/}
}
S. G. Pribegin. Approximation of functions in $H^p$, $0
[1] A. A. Soljanik, “On the order of approximation to function of $H^p(\mathbb R)$ ($0
\le1$) by certain of Fourier integrals”, Anal. Math., 12:1 (1986), 59–75 | DOI | MR | Zbl[2] R. M. Trigub, “Multiplikatory v prostranstve Khardi $H_p(D^m)$ pri $p\in(0,1]$ i approksimativnye svoistva metodov summirovaniya stepennykh ryadov”, Matem. sb., 188:4 (1997), 145–160 | MR | Zbl
[3] S. G. Pribegin, Otsenka sverkhu i snizu skorosti priblizheniya funktsii klassa $H^p$, $0
\le1$, Dep. GNTB Ukr. 29.06.93, No 1290–Uk 93[4] S. G. Pribegin, “Ob odnom metode priblizheniya v $H^p$, $0
\le1$”, Matem. sb., 192:11 (2001), 123–136 | MR | Zbl[5] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$ s prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR | MR | Zbl
[6] E. A. Storozhenko, “Priblizhenie funktsii klassa $H^p$, $0
\le1$”, Matem. sb., 105(147):4 (1978), 601–621 | MR | Zbl[7] U. Westphal, “An approach to fractional powers of operators via fractional differences”, Proc. London Math. Soc. (3), 29:3 (1974), 557–576 | DOI | MR | Zbl
[8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl