Approximation of functions in $H^p$, $0$,
Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 1025-1035
Voir la notice de l'article provenant de la source Math-Net.Ru
For $H^p$ functions in the unit disc, $0$, it is shown
that the rate of approximation of the boundary function in the $L^p$ metric
by the generalized Riesz means
$R_\varepsilon^{l,\alpha}(f,z)$, $\varepsilon>0$,
$(l+1)p>1$, $(\alpha+1)p>1$, is equivalent to the modulus of
smoothness of fractional order $l$.
This is a known result in the case of positive integer $l$.
Bibliography: 8 titles.
@article{SM_2006_197_7_a3,
author = {S. G. Pribegin},
title = {Approximation of functions in $H^p$, $0<p\le1$,},
journal = {Sbornik. Mathematics},
pages = {1025--1035},
publisher = {mathdoc},
volume = {197},
number = {7},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a3/}
}
S. G. Pribegin. Approximation of functions in $H^p$, $0