Approximation of functions in $H^p$, $0$,
Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 1025-1035

Voir la notice de l'article provenant de la source Math-Net.Ru

For $H^p$ functions in the unit disc, $0$, it is shown that the rate of approximation of the boundary function in the $L^p$ metric by the generalized Riesz means $R_\varepsilon^{l,\alpha}(f,z)$, $\varepsilon>0$, $(l+1)p>1$, $(\alpha+1)p>1$, is equivalent to the modulus of smoothness of fractional order $l$. This is a known result in the case of positive integer $l$. Bibliography: 8 titles.
@article{SM_2006_197_7_a3,
     author = {S. G. Pribegin},
     title = {Approximation of functions in $H^p$, $0<p\le1$,},
     journal = {Sbornik. Mathematics},
     pages = {1025--1035},
     publisher = {mathdoc},
     volume = {197},
     number = {7},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a3/}
}
TY  - JOUR
AU  - S. G. Pribegin
TI  - Approximation of functions in $H^p$, $0
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 1025
EP  - 1035
VL  - 197
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_7_a3/
LA  - en
ID  - SM_2006_197_7_a3
ER  - 
%0 Journal Article
%A S. G. Pribegin
%T Approximation of functions in $H^p$, $0
%J Sbornik. Mathematics
%D 2006
%P 1025-1035
%V 197
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_7_a3/
%G en
%F SM_2006_197_7_a3
S. G. Pribegin. Approximation of functions in $H^p$, $0