@article{SM_2006_197_7_a2,
author = {V. A. Mirzoyan},
title = {Structure theorems for {Ricci-semisymmetric} submanifolds},
journal = {Sbornik. Mathematics},
pages = {997--1024},
year = {2006},
volume = {197},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a2/}
}
V. A. Mirzoyan. Structure theorems for Ricci-semisymmetric submanifolds. Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 997-1024. http://geodesic.mathdoc.fr/item/SM_2006_197_7_a2/
[1] S. Tanno, “Hypersurfaces satisfying a certain condition on the Ricci tensor”, Tôhoku Math. J. (2), 21:2 (1969), 297–303 | DOI | MR | Zbl
[2] K. Sekigawa, “On some hypersurfaces satisfying $R(X,Y)\cdot R_1=0$”, Hokkaido Math. J., 1:1 (1972), 102–109 | MR | Zbl
[3] K. Sekigawa, H. Takagi, “On conformally flat spaces satisfying a certain condition on the Ricci tensor”, Tôhoku Math. J. (2), 23:1 (1971), 1–11 | DOI | MR | Zbl
[4] H. Nakagawa, R. Takagi, “Kaehler submanifolds with $RS=0$ in a complex projective space”, Hokkaido Math. J., 5:1 (1976), 67–70 | MR | Zbl
[5] Y. Matsuyama, “Complete hypersurfaces with $RS=0$ in $E^{n+1}$”, Proc. Amer. Math. Soc., 88 (1983), 119–123 | DOI | MR | Zbl
[6] V. A. Mirzoyan, “Ric-polusimmetricheskie podmnogoobraziya”, Itogi nauki i tekhniki. Problemy geometrii, 23, VINITI, M., 1991, 29–66 | MR | Zbl
[7] V. A. Mirzoyan, “Podmnogoobraziya s poluparallelnym tenzorom Richchi”, Uchenye zapiski Tartusk. un-ta, 1991, no. 930, 113–128 | MR
[8] V. A. Mirzoyan, “Strukturnye teoremy dlya rimanovykh Ric-polusimmetricheskikh prostranstv”, Izv. vuzov. Ser. matem., 1992, no. 6, 80–89 | MR | Zbl
[9] V. A. Mirzoyan, “Obobscheniya teoremy Yu. Lumiste o poluparallelnykh podmnogoobraziyakh”, Izv. NAN Armenii. Ser. matem., 33:1 (1998), 53–64 | MR | Zbl
[10] V. A. Mirzoyan, “Konusy nad einshteinovymi prostranstvami”, Izv. NAN Armenii. Ser. matem., 33:5 (1998), 46–54 | MR | Zbl
[11] V. A. Mirzoyan, “Podmnogoobraziya s parallelnymi i poluparallelnymi strukturami”, Izv. NAN Armenii. Ser. matem., 34:5 (1999), 63–66 | MR | Zbl
[12] V. A. Mirzoyan, “Klassifikatsiya Ric-poluparallelnykh giperpoverkhnostei v evklidovykh prostranstvakh”, Matem. sb., 191:9 (2000), 65–80 | MR | Zbl
[13] V. A. Mirzoyan, “Podmnogoobraziya s poluparallelnymi tenzornymi polyami kak ogibayuschie”, Matem. sb., 193:10 (2002), 99–112 | MR | Zbl
[14] V. A. Mirzoyan, “Skreschennye proizvedeniya, konusy nad einshteinovymi prostranstvami i klassifikatsiya odnogo klassa Ric-poluparallelnykh podmnogoobrazii”, Izv. RAN. Ser. matem., 67:5 (2003), 107–124 | MR | Zbl
[15] F. Defever, “Ricci-semisymmetric hypersurfaces”, Balkan J. Geom. Appl., 5:1 (2000), 81–91 | MR | Zbl
[16] Ü. Lumiste, “Semiparallelity, semisymmetricity and Ric- semisymmetricity for normally flat submanifolds in Euclidean space”, Proc. Estonian Acad. Sci. Phys. Math., 51:2 (2002), 67–85 | MR | Zbl
[17] D. Ferus, “Symmetric submanifolds of Euclidean space”, Math. Ann., 247:1 (1980), 81–93 | DOI | MR | Zbl
[18] F. Dillen, S. Nölker, “Semi-parallelity, multi-rotation surfaces and the helix-property”, J. Reine Angew. Math., 435 (1993), 33–63 | MR | Zbl
[19] Ü. Lumiste, “Submanifolds with parallel fundamental form”, Handbook of differential geometry, vol. 1, eds. F. Dillen, L. Verstraelen, North-Holland, Amsterdam, 2000, 779–864 | MR | Zbl
[20] V. A. Mirzoyan, “$s$-poluparallelnye podmnogoobraziya v prostranstvakh postoyannoi krivizny kak ogibayuschie $s$-parallelnykh podmnogoobrazii”, Izv. NAN Armenii. Matem., 31:5 (1996), 44–56 | MR | Zbl
[21] R. Deszcz, L. Verstraelen, S. Yaprak, “Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature”, Bull. Inst. Math. Acad. Sinica, 22:2 (1994), 167–179 | MR | Zbl
[22] F. Defever, R. Deszcz, L. Verstraelen, “On pseudosymmetric para-Kähler manifolds”, Colloq. Math., 74:2 (1997), 253–260 | MR | Zbl
[23] K. Arslan, Y. C̣elik, R. Deszcz, R. Ezentaṣ, “On the equivalence of Ricci-semisymmetry and semisymmetry”, Colloq. Math., 76:2 (1998), 279–294 | MR | Zbl
[24] Z. I. Szabó, “Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. I. The local version”, J. Differential Geom., 17:4 (1982), 531–582 | MR | Zbl
[25] A. Z. Petrov, Prostranstva Einshteina, Fizmatgiz, M., 1961 | MR | Zbl
[26] A. Besse, Mnogoobraziya Einshteina, t. 1, 2, Mir, M., 1990 | MR | MR | Zbl
[27] S. S. Chern, N. Kuiper, “Some theorems on the isometric imbedding of compact Riemannian manifolds in Euclidean space”, Ann. of Math. (2), 56:3 (1952), 422–430 | DOI | MR | Zbl
[28] E. Boeckx, O. Kowalski, L. Vanhecke, Riemannian manifolds of conullity two, World Sci., Singapore, 1996 | MR | Zbl
[29] P. A. Shirokov, “Postoyannye polya vektorov i tenzorov 2-go poryadka v rimanovykh prostranstvakh”, Izv. fiz.-matem. ob-va pri Kazanskom un-te. Ser. 2, 25 (1925), 86–114
[30] V. A. Mirzoyan, “Podmnogoobrazie s parallelnym tenzorom Richchi v evklidovykh prostranstvakh”, Izv. vuzov. Ser. matem., 1993, no. 9, 22–27 | MR | Zbl
[31] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, Fizmatlit, M., 1986 | MR | Zbl
[32] M. M. Postnikov, Lektsii po geometrii. Semestr VI. Rimanova geometriya, Faktorial, M., 1998 | MR | Zbl
[33] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. 2, Nauka, Fizmatlit, M., 1981 | MR | Zbl
[34] B.-Y. Chen, Geometry of submanifolds, Pure Math. Appl., 22, Marcel Dekker, New York, 1973 | MR | Zbl
[35] J. D. Moore, “Isometric immersions of Riemannian products”, J. Differential Geom., 5 (1971), 159–168 | MR | Zbl
[36] N. Ya. Vilenkin, Kombinatorika, Nauka, Fizmatlit, M., 1969 | MR | Zbl