A~generalization of the concept of sectorial operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 977-995
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $B$ be a Banach space and $G\colon[0,+\infty)\to(0,+\infty)$ a non-increasing function such that $G(t)\to0$ as $t\to\infty$ and $1/G$ is a Lipschitz function
on $[0,+\infty)$.
A linear operator $T\colon D(T)\subset B\to B$ is said to be
$G$-sectorial if there exist constants
$a\in\mathbb R$ and $\varphi\in(0,\pi/2)$ such that the spectrum
of $T$ lies in the set
$$
S_{a,\varphi}:=\{z\in\mathbb C\mid z\ne a,\ \lvert\arg(z-a)\rvert\varphi\}
$$
and
$$
\text{there exists } M>0\quad \text{such that }
\|R_\lambda(T)\|\le MG(|\lambda-a|)\text{ for }\lambda\notin
S_{a,\varphi},
$$
where $R_\lambda(T)$ is the resolvent of the operator $T$.
The properties of the operator exponential  and  fractional powers
of a $G$-sectorial operator are analysed alongside the question of the
unique solubility of  the Cauchy problem for the linear differential
operator with $G$-sectorial operator-valued
coefficient.
Bibliography: 8 titles.
			
            
            
            
          
        
      @article{SM_2006_197_7_a1,
     author = {M. F. Gorodnii and A. V. Chaikovskii},
     title = {A~generalization of the concept of sectorial operator},
     journal = {Sbornik. Mathematics},
     pages = {977--995},
     publisher = {mathdoc},
     volume = {197},
     number = {7},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a1/}
}
                      
                      
                    M. F. Gorodnii; A. V. Chaikovskii. A~generalization of the concept of sectorial operator. Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 977-995. http://geodesic.mathdoc.fr/item/SM_2006_197_7_a1/
