A generalization of the concept of sectorial operator
Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 977-995 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $B$ be a Banach space and $G\colon[0,+\infty)\to(0,+\infty)$ a non-increasing function such that $G(t)\to0$ as $t\to\infty$ and $1/G$ is a Lipschitz function on $[0,+\infty)$. A linear operator $T\colon D(T)\subset B\to B$ is said to be $G$-sectorial if there exist constants $a\in\mathbb R$ and $\varphi\in(0,\pi/2)$ such that the spectrum of $T$ lies in the set $$ S_{a,\varphi}:=\{z\in\mathbb C\mid z\ne a,\ \lvert\arg(z-a)\rvert<\varphi\} $$ and $$ \text{there exists } M>0\quad \text{such that } \|R_\lambda(T)\|\le MG(|\lambda-a|)\text{ for }\lambda\notin S_{a,\varphi}, $$ where $R_\lambda(T)$ is the resolvent of the operator $T$. The properties of the operator exponential and fractional powers of a $G$-sectorial operator are analysed alongside the question of the unique solubility of the Cauchy problem for the linear differential operator with $G$-sectorial operator-valued coefficient. Bibliography: 8 titles.
@article{SM_2006_197_7_a1,
     author = {M. F. Gorodnii and A. V. Chaikovskii},
     title = {A~generalization of the concept of sectorial operator},
     journal = {Sbornik. Mathematics},
     pages = {977--995},
     year = {2006},
     volume = {197},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a1/}
}
TY  - JOUR
AU  - M. F. Gorodnii
AU  - A. V. Chaikovskii
TI  - A generalization of the concept of sectorial operator
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 977
EP  - 995
VL  - 197
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_7_a1/
LA  - en
ID  - SM_2006_197_7_a1
ER  - 
%0 Journal Article
%A M. F. Gorodnii
%A A. V. Chaikovskii
%T A generalization of the concept of sectorial operator
%J Sbornik. Mathematics
%D 2006
%P 977-995
%V 197
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2006_197_7_a1/
%G en
%F SM_2006_197_7_a1
M. F. Gorodnii; A. V. Chaikovskii. A generalization of the concept of sectorial operator. Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 977-995. http://geodesic.mathdoc.fr/item/SM_2006_197_7_a1/

[1] D. Khenri, Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | MR | Zbl

[2] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | MR | Zbl

[3] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | MR | Zbl

[4] E. Khille, R. S. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | MR | Zbl

[5] M. F. Gorodnii, N. M. Kutsik, A. V. Chaikovskii, “Pro odne uzagalnennya ponyattya sektorialnogo operatora”, Visnik Kiïvskogo universitetu im. Tarasa Shevchenko. Ser. fiz.-matem. nauki, 2004, no. 1, 80–86 | Zbl

[6] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR | Zbl

[7] Yu. T. Silchenko, P. E. Sobolevskii, “Razreshimost zadachi Koshi dlya evolyutsionnogo uravneniya v banakhovom prostranstve s neplotno zadannym operatornym koeffitsientom, porozhdayuschim polugruppu s osobennostyu”, Sib. matem. zhurn., 27:4 (1986), 93–104 | MR | Zbl

[8] Yu. T. Silchenko, “Ob odnom klasse polugrupp”, Funkts. analiz i ego prilozh., 33:4 (1999), 90–93 | MR | Zbl