Projective geometry of systems of second-order differential equations
Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 951-975 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that every projective connection on an $n$-dimensional manifold $M$ is locally defined by a system $\mathscr S$ of $n-1$ second-order ordinary differential equations resolved with respect to the second derivatives and with right-hand sides cubic in the first derivatives, and that every differential system $\mathscr S$ defines a projective connection on $M$. The notion of equivalent differential systems is introduced and necessary and sufficient conditions are found for a system $\mathscr S$ to be reducible by a change of variables to a system whose integral curves are straight lines. It is proved that the symmetry group of a differential system $\mathscr S$ is a group of projective transformations in $n$-dimensional space with the associated projective connection and has dimension $\leqslant n^2+2n$. Necessary and sufficient conditions are found for a system to admit the maximal symmetry group; basis vector fields and structure equations of the maximal symmetry Lie algebra are produced. As an application a classification is given of the systems $\mathscr S$ of two second-order differential equations admitting three-dimensional soluble symmetry groups. Bibliography: 22 titles.
@article{SM_2006_197_7_a0,
     author = {A. V. Aminova and N. A. Aminov},
     title = {Projective geometry of systems of second-order differential equations},
     journal = {Sbornik. Mathematics},
     pages = {951--975},
     year = {2006},
     volume = {197},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_7_a0/}
}
TY  - JOUR
AU  - A. V. Aminova
AU  - N. A. Aminov
TI  - Projective geometry of systems of second-order differential equations
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 951
EP  - 975
VL  - 197
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_7_a0/
LA  - en
ID  - SM_2006_197_7_a0
ER  - 
%0 Journal Article
%A A. V. Aminova
%A N. A. Aminov
%T Projective geometry of systems of second-order differential equations
%J Sbornik. Mathematics
%D 2006
%P 951-975
%V 197
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2006_197_7_a0/
%G en
%F SM_2006_197_7_a0
A. V. Aminova; N. A. Aminov. Projective geometry of systems of second-order differential equations. Sbornik. Mathematics, Tome 197 (2006) no. 7, pp. 951-975. http://geodesic.mathdoc.fr/item/SM_2006_197_7_a0/

[1] G. Birkgof, Gidrodinamika. Postanovka zadach, rezultaty i podobie, IL, M., 1954 | MR | Zbl

[2] M. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[3] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | Zbl

[4] R. L. Anderson, N. H. Ibragimov, Lie–Bäcklund transformations in applications, SIAM Stud. Appl. Math., 1, SIAM, Philadelphia, PA, 1979 | MR | Zbl

[5] A. M. Vinogradov, I. S. Krasilschik, V. V. Lychagin, Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986 | MR | MR | Zbl

[6] A. S. Mischenko, A. T. Fomenko, “Obobschennyi metod integrirovaniya gamiltonovykh sistem”, Funkts. analiz i ego prilozh., 12:2 (1978), 46–56 | MR | Zbl

[7] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy. I”, Itogi nauki i tekhn. Sovrem. probl. matem., 4, VINITI, M., 1985, 179–284 | MR | Zbl

[8] V. S. Dryuma, Geometricheskaya teoriya nelineinykh dinamicheskikh sistem, Preprint IM s VTs AN MSSR, Kishinev, 1986

[9] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[10] A. V. Aminova, “Proektivnye preobrazovaniya i simmetrii differentsialnykh uravnenii”, Matem. sb., 186:12 (1995), 21–36 | MR | Zbl

[11] Sh. Kobayasi, Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR | MR | Zbl

[12] E. Cartan, “Sur les variétés à connexion projective”, Bull. Soc. Math. France, 52 (1924), 205–241 | MR | Zbl

[13] A. Tresse, “Sur les invariants différentielles des groupes continus de transformations”, Acta Math., 18:1 (1894), 1–3 | DOI | MR | Zbl

[14] A. Tresse, Détermination des invariants ponctuels de l'équation différentielle ordinaire du second ordre $y''=\omega(x,y,y')$, S. Hirkei, Leipzig, 1896 | Zbl

[15] K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957 | MR | Zbl

[16] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, t. 1, 2, Nauka, M., 1981 | MR | MR | Zbl

[17] I. P. Egorov, Dvizheniya v prostranstvakh affinnoi svyaznosti, Izd-vo KGU, Kazan, 1965 | MR

[18] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22, Amer. Math. Soc., Providence, RI, 1957 | MR | Zbl

[19] L. S. Pontryagin, Nepreryvnye gruppy, Nauka, M., 1973 | MR | Zbl

[20] A. Ya. Sultanov, “Trekhmernye prostranstva proektivnoi svyaznosti maloi podvizhnosti”, Uch. zap. Ryazansk. gos. ped. in-ta, 1974, 27–32 | MR

[21] A. Ya. Sultanov, O nekotorykh trekhmernykh prostranstvakh proektivnoi svyaznosti, dopuskayuschikh pryamye proizvedeniya grupp dvizhenii, Dep. v VINITI, No 288-81, Penz. gos. ped. in-t., Penza, 1980

[22] A. Ya. Sultanov, Ob avtomorfizmakh v prostranstvakh proektivnoi svyaznosti, Dis. ... kand. fiz.-matem. nauk, Penzensk. gos. ped. in-t, Penza, 1981