Complete description of the Maxwell strata in the
Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 901-950 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generalized Dido problem is considered – a model of the nilpotent sub-Riemannian problem with the growth vector $(2,3,5)$. The Maxwell set is studied, that is, the locus of the intersection points of geodesics of equal length. A complete description is obtained for the Maxwell strata corresponding to the symmetry group of the exponential map generated by rotations and reflections. All the corresponding Maxwell times are found and located. The conjugate points that are limit points of the Maxwell set are also found. An upper estimate is obtained for the cut time (time of loss of optimality) on geodesics. Bibliography: 12 titles.
@article{SM_2006_197_6_a5,
     author = {Yu. L. Sachkov},
     title = {Complete description of the {Maxwell} strata in the},
     journal = {Sbornik. Mathematics},
     pages = {901--950},
     year = {2006},
     volume = {197},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a5/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Complete description of the Maxwell strata in the
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 901
EP  - 950
VL  - 197
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_6_a5/
LA  - en
ID  - SM_2006_197_6_a5
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Complete description of the Maxwell strata in the
%J Sbornik. Mathematics
%D 2006
%P 901-950
%V 197
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2006_197_6_a5/
%G en
%F SM_2006_197_6_a5
Yu. L. Sachkov. Complete description of the Maxwell strata in the. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 901-950. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a5/

[1] Yu. L. Sachkov, “Eksponentsialnoe otobrazhenie v obobschennoi zadache Didony”, Matem. sb., 194:9 (2003), 63–90 | MR | Zbl

[2] A. A. Agrachev, A. V. Sarychev, “Filtratsiya algebry Li vektornykh polei i nilpotentnaya approksimatsiya upravlyaemykh sistem”, Dokl. AN SSSR, 295:4 (1987), 777–781 | MR | Zbl

[3] A. Bellaiche, “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, Progr. Math., 144, eds. A. Bellaiche, J.-J. Risler, Birkhäuser, Basel, 1996, 1–78 | MR | Zbl

[4] A. A. Agrachev, Yu. L. Sachkov, “An intrinsic approach to the control of rolling bodies”, Proceedings of the 38-th IEEE Conference on Decision and Control, vol. 1 (Phoenix, AZ, USA, December 7–10, 1999), IEEE, Piscataway, NJ, 1999, 431–435

[5] Yu. L. Sachkov, “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl

[6] Yu. L. Sachkov, E. F. Sachkova, “Geometricheskii smysl invariantov i globalnaya struktura faktorprostranstva v obobschennoi zadache Didony”, Programmnye sistemy: teoriya i prilozheniya, t. 2, Fizmatlit, M., 2004, 387–407

[7] Yu. L. Sachkov, “Diskretnye simmetrii v obobschennoi zadache Didony”, Matem. sb., 197:2 (2006), 95–116 | MR

[8] Yu. L. Sachkov, “Mnozhestvo Maksvella v obobschennoi zadache Didony”, Matem. sb., 197:4 (2006), 123–150 | MR

[9] S. Wolfram, Mathematica: a system for doing mathematics by computer, Addison-Wesley, Reading, MA, 1992 | Zbl | Zbl

[10] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl

[11] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, URSS, M., 2002 | MR | Zbl

[12] D. F. Lawden, Elliptic functions and applications, Appl. Math. Sci., 80, Springer-Verlag, New York, 1989 | MR | Zbl