Quadratic forms of projective spaces over rings
Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 887-899 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the passage from fields to rings of coefficients quadratic forms with invertible matrices lose their decisive role. It turns out that if all quadratic forms over a ring are diagonalizable, then in effect this is always a local principal ideal ring $R$ with $2\in R^*$. The problem of the construction of a ‘normal’ diagonal form of a quadratic form over a ring $R$ faces obstacles in the case of indices $|R^*:R^{*2}|$ greater than 1. In the case of index 2 this problem has a solution given in Theorem 2.1 for $1+R^{*2}\subseteq R^{*2}$ (an extension of the law of inertia for real quadratic forms) and in Theorem 2.2 for $1+R^2$ containing an invertible non-square. Under the same conditions on a ring $R$ with nilpotent maximal ideal the number of classes of projectively congruent quadratic forms of the projective space associated with a free $R$-module of rank $n$ is explicitly calculated (Proposition 3.2). Up to projectivities, the list of forms is presented for the projective plane over $R$ and also (Theorem 3.3) over the local ring $F[[x,y]]/\langle x^{2},xy,y^{2}\rangle$ with non-principal maximal ideal, where $F=2F$ is a field with an invertible non-square in $1+F^{2}$ and $|F^{*}:F^{*2}|=2$. In the latter case the number of classes of non-diagonalizable quadratic forms of rank 0 depends on one's choice of the field $F$ and is not even always finite; all the other forms make up 21 classes. Bibliography: 28 titles.
@article{SM_2006_197_6_a4,
     author = {V. M. Levchuk and O. A. Starikova},
     title = {Quadratic forms of projective spaces over rings},
     journal = {Sbornik. Mathematics},
     pages = {887--899},
     year = {2006},
     volume = {197},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a4/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - O. A. Starikova
TI  - Quadratic forms of projective spaces over rings
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 887
EP  - 899
VL  - 197
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_6_a4/
LA  - en
ID  - SM_2006_197_6_a4
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A O. A. Starikova
%T Quadratic forms of projective spaces over rings
%J Sbornik. Mathematics
%D 2006
%P 887-899
%V 197
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2006_197_6_a4/
%G en
%F SM_2006_197_6_a4
V. M. Levchuk; O. A. Starikova. Quadratic forms of projective spaces over rings. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 887-899. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a4/

[1] E. Artin, Geometricheskaya algebra, Nauka, Fizmatlit, M., 1969 | MR | Zbl

[2] A. I. Maltsev, Osnovy lineinoi algebry, Nauka, Fizmatlit, M., 1970 | MR | MR | Zbl

[3] W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss., 270, Springer-Verlag, Berlin, 1985 | MR | Zbl

[4] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin/Cummings Publ., Reading, MA, 1980 | MR | Zbl

[5] R. Baeza, “The norm theorem for quadratic forms over a field of characteristic 2”, Comm. Algebra, 18:5 (1990), 1337–1348 | DOI | MR | Zbl

[6] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, Fizmatlit, M., 1972 | MR | Zbl

[7] B. A. Venkov, Izbrannye trudy. Issledovaniya po teorii chisel, Nauka, L., 1981 | MR | Zbl

[8] E. B. Vinberg, “Ob unimodulyarnykh tselochislennykh kvadratichnykh formakh”, Funkts. analiz i ego prilozh., 6:2 (1972), 24–31 | MR | Zbl

[9] D. Kassels, Ratsionalnye kvadratichnye formy, Mir, M., 1982 | MR | Zbl

[10] W. Benz, Vorlesungen über Geometrie der Algebren, Springer-Verlag, Berlin, 1973 | MR | Zbl

[11] V. V. Vishnevskii, B. A. Rozenfeld, A. P. Shirokov, “O razvitii geometrii prostranstv nad algebrami”, Izv. vuzov. Ser. matem., 1984, no. 7, 38–44 | MR | Zbl

[12] V. V. Vishnevskii, A. P. Shirokov, V. V. Shurygin, Prostranstva nad algebrami, Izd-vo Kazanskogo un-ta, Kazan, 1985 | MR | Zbl

[13] M. A. Marshall, Bilinear forms and orderings on commutative rings, Queen's Papers in Pure and Appl. Math., 71, Queen's Univ., Kingston, ON, 1985 | MR | Zbl

[14] Yu. I. Merzlyakov (red.), Avtomorfizmy klassicheskikh grupp, Sb. per., Mir, M., 1976 | MR

[15] M. Ojanguren, R. Sridharan, “A note on the fundamental theorem of projective geometry”, Comment Math. Helv., 44 (1969), 310–315 | DOI | MR | Zbl

[16] R. Baeza, Quadratic forms over semilocal rings, Lecture Notes in Math., 655, Springer-Verlag, Berlin, 1978 | MR | Zbl

[17] R. Baeza, “On the classification of quadratic forms over semilocal rings”, Colloque sur les Formes Quadratiques, 2 (Montpellier, 1977), Bull. Soc. Math. France Mém., 59, 1979, 7–10 | MR | Zbl

[18] J.-L. Colliot-Thélène, “Formes quadratiques sur les anneaux semi-locaux réguliers”, Colloque sur les Formes Quadratiques, 2 (Montpellier, 1977), Bull. Soc. Math. France Mém., 59, 1979, 13–31 | MR | Zbl

[19] J. L. Yucas, “A classification theorem for quadratic forms over semilocal rings”, Ann. Math. Sil., 2:14 (1986), 7–12 | MR | Zbl

[20] D. R. Estes, R. M. Guralnick, “A stable range for quadratic forms over commutative rings”, J. Pure Appl. Algebra, 120:3 (1997), 255–280 | DOI | MR | Zbl

[21] Dzh. Milnor, D. Khyuzmoller, Simmetricheskie bilineinye formy, Nauka, Fizmatlit, M., 1986 | MR | MR | Zbl

[22] O. A. Starikova, “Perechislenie kvadrik proektivnykh ploskostei i prostranstv nad lokalnymi koltsami glavnykh idealov”, Algebra i teoriya modelei, no. 4, NGTU, Novosibirsk, 2003, 110–115

[23] V. M. Levchuk, O. A. Starikova, “Kvadriki i simmetrichnye formy modulei nad lokalnym koltsom glavnykh idealov”, Tezisy dokladov “Mezhdunarodnaya algebraicheskaya konferentsiya”, MGU, M., 2004, 86–88

[24] O. A. Starikova, Perechislenie kvadrik i simmetrichnykh form modulei nad lokalnymi koltsami, Dis. ... kand. fiz.-matem. nauk, Severnyi mezhdunarodnyi universitet, Magadan, 2004

[25] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | MR | Zbl

[26] B. L. Van der Varden, Algebra, Nauka, Fizmatlit, M., 1979 | MR | Zbl

[27] W. Brown, Matrices over commutative rings, Monogr. Textbooks Pure Appl. Math., 169, Marcel Dekker, New York, 1993 | MR | Zbl

[28] E. A. Hornix, “Totally indefinite quadratic forms over formally real fields”, Nederl. Akad. Wetensch. Indag. Math., 47:3 (1985), 305–312 | MR | Zbl