The buffer property in a non-classical hyperbolic
Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 853-885 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of a self-excited $RCL$-oscillator with a segment of a solenoid in the feedback loop is considered, which is the following boundary-value problem: \begin{gather*} \frac{\partial^2}{\partial t^2} \biggl(u-\varkappa\frac{\partial^2u}{\partial x^2}\biggr) +\varepsilon\frac{\partial}{\partial t} \biggl(u-\varkappa\frac{\partial^2u}{\partial x^2}\biggr) =\frac{\partial^2u}{\partial x^2}\,, \\ \frac{\partial u}{\partial x}\bigg|_{x=1}=0, \qquad u\big|_{x=0}+(1+\varepsilon^2\gamma)u\big|_{x=1}-u^3\big|_{x=1}=0, \end{gather*} where $0<\varepsilon\ll1$, and $\varkappa$ and $\gamma$ are positive parameters of order 1. For this boundary-value problem with suitably increased $\gamma$ and reduced $\varepsilon$ one proves the existence of an arbitrary prescribed finite number of stable cycles (solutions periodic in $t$). Bibliography: 12 titles.
@article{SM_2006_197_6_a3,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The buffer property in a non-classical hyperbolic},
     journal = {Sbornik. Mathematics},
     pages = {853--885},
     year = {2006},
     volume = {197},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a3/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The buffer property in a non-classical hyperbolic
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 853
EP  - 885
VL  - 197
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_6_a3/
LA  - en
ID  - SM_2006_197_6_a3
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The buffer property in a non-classical hyperbolic
%J Sbornik. Mathematics
%D 2006
%P 853-885
%V 197
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2006_197_6_a3/
%G en
%F SM_2006_197_6_a3
A. Yu. Kolesov; N. Kh. Rozov. The buffer property in a non-classical hyperbolic. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 853-885. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a3/

[1] A. A. Vitt, “Raspredelennye avtokolebatelnye sistemy”, ZhTF, 4:1 (1934), 146–157 | Zbl

[2] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii, Tr. MIAN, 222, Nauka, M., 1998 | MR | Zbl

[3] A. Yu. Kolesov, N. Kh. Rozov, V. G. Sushko, “Spetsifika avtokolebatelnykh protsessov v rezonansnykh giperbolicheskikh sistemakh”, Fundam. i prikl. matem., 5:2 (1999), 437–473 | MR | Zbl

[4] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Yavlenie bufernosti v rezonansnykh sistemakh giperbolicheskikh uravnenii”, UMN, 55:2 (2000), 95–120 | MR | Zbl

[5] A. Yu. Kolesov, N. Kh. Rozov, “Yavlenie bufernosti v $RCLG$-avtogeneratore: teoreticheskii analiz i rezultaty eksperimenta”, Differentsialnye uravneniya. Nekotorye matematicheskie zadachi optimalnogo upravleniya, Tr. MIAN, 233, Nauka, M., 2001, 153–207 | MR | Zbl

[6] L. V. Postnikov, V. I. Korolev (red.), Sbornik zadach po teorii kolebanii, Nauka, M., 1978

[7] M. I. Rabinovich, D. I. Trubetskov, Vvedenie v teoriyu kolebanii i voln, Nauka, M., 1984 | MR | Zbl

[8] Yu. S. Kolesov, “Matematicheskaya teoriya RC-avtogeneratorov s raspredelennymi parametrami v tsepi obratnoi svyazi”, Differentsialnye uravneniya i ikh primenenie, no. 2, In-t fiziki i matematiki AN LitSSR, Vilnyus, 1971, 1–67 | MR | Zbl

[9] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004 | Zbl

[10] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. Chua, Metody kachestvennoi teorii v nelineinoi dinamike, ch. 1, In-t kompyuternykh issledovanii, M., Izhevsk, 2004

[11] A. B. Vasileva, S. A. Kaschenko, Yu. S. Kolesov, N. Kh. Rozov, “Bifurkatsiya avtokolebanii nelineinykh parabolicheskikh uravnenii s maloi diffuziei”, Matem. sb., 130:4 (1986), 488–499 | MR | Zbl

[12] Yu. S. Kolesov, “Bifurkatsiya invariantnykh torov parabolicheskikh sistem s maloi diffuziei”, Matem. sb., 184:3 (1993), 121–136 | MR | Zbl