The buffer property in a non-classical hyperbolic
Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 853-885

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of a self-excited $RCL$-oscillator with a segment of a solenoid in the feedback loop is considered, which is the following boundary-value problem: \begin{gather*} \frac{\partial^2}{\partial t^2} \biggl(u-\varkappa\frac{\partial^2u}{\partial x^2}\biggr) +\varepsilon\frac{\partial}{\partial t} \biggl(u-\varkappa\frac{\partial^2u}{\partial x^2}\biggr) =\frac{\partial^2u}{\partial x^2}\,, \\ \frac{\partial u}{\partial x}\bigg|_{x=1}=0, \qquad u\big|_{x=0}+(1+\varepsilon^2\gamma)u\big|_{x=1}-u^3\big|_{x=1}=0, \end{gather*} where $0\varepsilon\ll1$, and $\varkappa$ and $\gamma$ are positive parameters of order 1. For this boundary-value problem with suitably increased $\gamma$ and reduced $\varepsilon$ one proves the existence of an arbitrary prescribed finite number of stable cycles (solutions periodic in $t$). Bibliography: 12 titles.
@article{SM_2006_197_6_a3,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The buffer property in a non-classical hyperbolic},
     journal = {Sbornik. Mathematics},
     pages = {853--885},
     publisher = {mathdoc},
     volume = {197},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a3/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The buffer property in a non-classical hyperbolic
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 853
EP  - 885
VL  - 197
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_6_a3/
LA  - en
ID  - SM_2006_197_6_a3
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The buffer property in a non-classical hyperbolic
%J Sbornik. Mathematics
%D 2006
%P 853-885
%V 197
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_6_a3/
%G en
%F SM_2006_197_6_a3
A. Yu. Kolesov; N. Kh. Rozov. The buffer property in a non-classical hyperbolic. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 853-885. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a3/