Asymptotic solution of a Cauchy problem in a neighbourhood
Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 835-851 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of an asymptotic solution of a quasilinear parabolic equation with a small parameter is proved in a neighbourhood of the transition point of a weak discontinuity of the solution of the limiting equation into a shock wave. The behaviour of the first two coefficients of this asymptotic solution is studied in the entire plane of the stretched variables. Bibliography: 4 titles.
@article{SM_2006_197_6_a2,
     author = {S. V. Zakharov},
     title = {Asymptotic solution of a {Cauchy} problem in a neighbourhood},
     journal = {Sbornik. Mathematics},
     pages = {835--851},
     year = {2006},
     volume = {197},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a2/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - Asymptotic solution of a Cauchy problem in a neighbourhood
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 835
EP  - 851
VL  - 197
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_6_a2/
LA  - en
ID  - SM_2006_197_6_a2
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T Asymptotic solution of a Cauchy problem in a neighbourhood
%J Sbornik. Mathematics
%D 2006
%P 835-851
%V 197
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2006_197_6_a2/
%G en
%F SM_2006_197_6_a2
S. V. Zakharov. Asymptotic solution of a Cauchy problem in a neighbourhood. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 835-851. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a2/

[1] S. V. Zakharov, A. M. Ilin, “Ot slabogo razryva k gradientnoi katastrofe”, Matem. sb., 192:10 (2001), 3–18 | MR | Zbl

[2] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, Fizmatlit, M., 1989 | MR | Zbl

[3] V. G. Sushko, “Ob asimptoticheskikh razlozheniyakh reshenii odnogo parabolicheskogo uravneniya s malym parametrom”, Differents. uravneniya, 21:10 (1985), 1794–1798 | MR | Zbl

[4] N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., L., 1963 | MR | Zbl