Properties of series of exponentials whose exponents satisfy to 
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 813-833
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let sequence $\{\lambda_n\}$, $0\lambda_n\uparrow\infty$, satisfies to a condition of Levinson type. It is obtained exact estimate of growth of the Dirichlet series 
$f(z)=\sum_{n=1}^\infty a_ne^{\lambda_nz}$  on the curve of bounded slope, depending only on its coefficients and exponents.
			
            
            
            
          
        
      @article{SM_2006_197_6_a1,
     author = {A. M. Gaisin},
     title = {Properties of series of exponentials whose exponents satisfy to},
     journal = {Sbornik. Mathematics},
     pages = {813--833},
     publisher = {mathdoc},
     volume = {197},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/}
}
                      
                      
                    A. M. Gaisin. Properties of series of exponentials whose exponents satisfy to. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 813-833. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/
