Properties of series of exponentials whose exponents satisfy to
Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 813-833 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let sequence $\{\lambda_n\}$, $0<\lambda_n\uparrow\infty$, satisfies to a condition of Levinson type. It is obtained exact estimate of growth of the Dirichlet series $f(z)=\sum_{n=1}^\infty a_ne^{\lambda_nz}$ on the curve of bounded slope, depending only on its coefficients and exponents.
@article{SM_2006_197_6_a1,
     author = {A. M. Gaisin},
     title = {Properties of series of exponentials whose exponents satisfy to},
     journal = {Sbornik. Mathematics},
     pages = {813--833},
     year = {2006},
     volume = {197},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/}
}
TY  - JOUR
AU  - A. M. Gaisin
TI  - Properties of series of exponentials whose exponents satisfy to
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 813
EP  - 833
VL  - 197
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/
LA  - en
ID  - SM_2006_197_6_a1
ER  - 
%0 Journal Article
%A A. M. Gaisin
%T Properties of series of exponentials whose exponents satisfy to
%J Sbornik. Mathematics
%D 2006
%P 813-833
%V 197
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/
%G en
%F SM_2006_197_6_a1
A. M. Gaisin. Properties of series of exponentials whose exponents satisfy to. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 813-833. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/

[1] N. Levinson, Gap and density theorems, Amer. Math. Soc., New York, 1940 | MR | Zbl

[2] N. Sjöberg, Sur les minorantes sousharmoniques d'une fonction donnée, IX Congr. des Math. Scand., 1939 | Zbl

[3] V. P. Gurarii, “K teoreme N. Levinsona o normalnykh semeistvakh analiticheskikh funktsii”, Zapiski nauchn. sem. LOMI, 19, 1970, 215–220 | MR | Zbl

[4] M. A. Evgrafov, “Ob odnoi teoreme edinstvennosti dlya ryadov Dirikhle”, UMN, 17:3 (1962), 169–175 | MR | Zbl

[5] A. J. Macintyre, “Asymptotic paths of integral functions with gap power series”, Proc. London Math. Soc. (3), 2 (1952), 286–296 | DOI | MR | Zbl

[6] A. M. Gaisin, “Usilennaya nepolnota sistemy eksponent i problema Makintaira”, Matem. sb., 182:7 (1991), 931–945 | MR | Zbl

[7] G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzeihen”, Math. Z., 29 (1929), 549–640 | DOI | MR | Zbl

[8] A. M. Gaisin, “Otsenka rosta i ubyvaniya tseloi funktsii beskonechnogo poryadka na krivykh”, Matem. sb., 194:8 (2003), 55–82 | MR | Zbl

[9] J. Korevaar, M. Dixon, “Interpolation, strongly nonspanning powers and Macintyre exponents”, Nederl. Akad. Wetensch. Indag. Math., 40:2 (1978), 243–258 | MR | Zbl

[10] A. I. Pavlov, “O roste po krivym tselykh funktsii. zadannykh lakunarnymi stepennymi ryadami”, Sib. matem. zhurn., 13:5 (1972), 1169–1181 | MR | Zbl

[11] T. Kövari, “On the asymptotic paths of entire functions with gap power series”, J. Anal. Math., 15 (1965), 281–286 | DOI | MR | Zbl

[12] B. Berndtsson, “A note on Pavlov-Korevaar-Dixon interpolation”, Nederl. Akad. Wetensch. Indag. Math., 40:4 (1978), 409–414 | MR | Zbl

[13] A. M. Gaisin, “Asimptoticheskoe povedenie summy tselogo ryada Dirikhle na krivykh”, Issledovaniya po teorii priblizhenii, BNTs UrO AN SSSR, Ufa, 1989, 3–15 | MR | Zbl

[14] A. M. Gaisin, “Asimptoticheskaya otsenka summy ryada Dirikhle na krivykh”, Matem. zametki, 61:6 (1997), 810–816 | MR | Zbl

[15] A. F. Leontev, Posledovatelnosti polinomov iz eksponent, Nauka, Fizmatlit, M., 1980 | MR | Zbl

[16] A. M. Gaisin, “Otsenka ryada Dirikhle, pokazateli kotorogo – nuli tseloi funktsii s neregulyarnym povedeniem”, Matem. sb., 185:2 (1994), 33–56 | MR | Zbl

[17] A. M. Gaisin, “Reshenie problemy Poia”, Matem. sb., 193:6 (2002), 39–60 | MR | Zbl

[18] A. F. Leontev, Ryady eksponent, Nauka, Fizmatlit, M., 1976 | MR | Zbl

[19] V. S. Boichuk, “O nekotorykh svoistvakh utochnennogo poryadka”, Sib. matem. zhurn., 20:2 (1979), 229–236 | MR | Zbl

[20] V. E. Katsnelson, “Tselye funktsii klassa Kartrait s neregulyarnym povedeniem”, Funkts. analiz i ego prilozh., 10:4 (1976), 35–44 | MR | Zbl

[21] P. Koosis, The logarithmic integral, I, Corrected reprint of the 1988 original, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press., Cambridge, 1998 | MR | MR | Zbl