Properties of series of exponentials whose exponents satisfy to
Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 813-833

Voir la notice de l'article provenant de la source Math-Net.Ru

Let sequence $\{\lambda_n\}$, $0\lambda_n\uparrow\infty$, satisfies to a condition of Levinson type. It is obtained exact estimate of growth of the Dirichlet series $f(z)=\sum_{n=1}^\infty a_ne^{\lambda_nz}$ on the curve of bounded slope, depending only on its coefficients and exponents.
@article{SM_2006_197_6_a1,
     author = {A. M. Gaisin},
     title = {Properties of series of exponentials whose exponents satisfy to},
     journal = {Sbornik. Mathematics},
     pages = {813--833},
     publisher = {mathdoc},
     volume = {197},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/}
}
TY  - JOUR
AU  - A. M. Gaisin
TI  - Properties of series of exponentials whose exponents satisfy to
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 813
EP  - 833
VL  - 197
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/
LA  - en
ID  - SM_2006_197_6_a1
ER  - 
%0 Journal Article
%A A. M. Gaisin
%T Properties of series of exponentials whose exponents satisfy to
%J Sbornik. Mathematics
%D 2006
%P 813-833
%V 197
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/
%G en
%F SM_2006_197_6_a1
A. M. Gaisin. Properties of series of exponentials whose exponents satisfy to. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 813-833. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a1/