Mots-clés : normal invariant
@article{SM_2006_197_6_a0,
author = {A. Bak and Yu. V. Muranov},
title = {Properties of exponential series with},
journal = {Sbornik. Mathematics},
pages = {791--811},
year = {2006},
volume = {197},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a0/}
}
A. Bak; Yu. V. Muranov. Properties of exponential series with. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 791-811. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a0/
[1] A. A. Ranicki, Exact sequences in the algebraic theory of surgery, Math. Notes, 26, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1981 | MR | Zbl
[2] A. A. Ranicki, “The total surgery obstruction”, Algebraic topology, Proc. Sympos. (Univ. Aarhus, Aarhus 1978), Lecture Notes in Math., 763, Springer-Verlag, Berlin, 1979, 275–316 | MR | Zbl
[3] A. Bak, “Odd dimension surgery groups of odd torsion groups vanish”, Topology, 14:4 (1975), 367–374 | DOI | MR | Zbl
[4] A. Bak, “The computation of surgery groups of finite groups with abelian 2-hyperelementary subgroups”, Algebraic $K$-theory, Proc. Conf. (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, Springer-Verlag, Berlin, 1976, 384–409 | MR | Zbl
[5] I. Hambleton, I. Madsen, “On the computation of the projective surgery obstruction groups”, K-theory, 7:6 (1993), 537–574 | DOI | MR | Zbl
[6] C. T. C. Wall, “Classification of Hermitian forms. VI: Group rings”, Ann. of Math. (2), 103:1 (1976), 1–80 | DOI | MR | Zbl
[7] S. C. Ferry, A. A. Ranicki, J. Rosenberg (eds.), Novikov conjectures, index theorems and rigidity, vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[8] A. A. Ranicki, Algebraic $L$-theory and topological manifolds, Cambridge Tracts in Math., 102, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[9] C. T. C. Wall, Surgery on compact manifolds, Second Edition, Math. Surveys Monogr., 69, ed. A. A. Ranicki, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[10] I. Hambleton, A. Ranicki, L. Taylor, “Round $L$-theory”, J. Pure Appl. Algebra, 47:2 (1987), 131–154 | DOI | MR | Zbl
[11] Yu. V. Muranov, I. Khemblton, “Proektivnye gruppy prepyatstvii k rasschepleniyu vdol odnostoronnikh podmnogoobrazii”, Matem. sb., 190:10 (1999), 65–86 | MR | Zbl
[12] Yu. V. Muranov, “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. matem., 59:6 (1995), 107–132 | MR | Zbl
[13] Yu. V. Muranov, D. Repovsh, “Gruppy prepyatstvii k perestroikam i rasschepleniyam dlya pary mnogoobrazii”, Matem. sb., 188:3 (1997), 127–142 | MR | Zbl
[14] R. Switzer, Algebraic topology–homotopy and homology, Grund. Math. Wiss., 212, Springer-Verlag, New York, 1975 | MR | Zbl
[15] S. López de Medrano, Involutions on manifolds, Ergeb. Math. Grezgeb., 59, Springer-Verlag, New York, 1971 | MR | Zbl