Properties of exponential series with
Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 791-811 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if the sequence of exponents of a Dirichlet series satisfies a Levinson-type condition, then the growth of the absolute values of its sum has a sharp lower bound on curves of bounded slope which depends only on the coefficients and the exponents of the series. Bibliography: 21 titles.
Keywords: surgery exact sequence, splitting along submanifold.
Mots-clés : normal invariant
@article{SM_2006_197_6_a0,
     author = {A. Bak and Yu. V. Muranov},
     title = {Properties of exponential series with},
     journal = {Sbornik. Mathematics},
     pages = {791--811},
     year = {2006},
     volume = {197},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_6_a0/}
}
TY  - JOUR
AU  - A. Bak
AU  - Yu. V. Muranov
TI  - Properties of exponential series with
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 791
EP  - 811
VL  - 197
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_6_a0/
LA  - en
ID  - SM_2006_197_6_a0
ER  - 
%0 Journal Article
%A A. Bak
%A Yu. V. Muranov
%T Properties of exponential series with
%J Sbornik. Mathematics
%D 2006
%P 791-811
%V 197
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2006_197_6_a0/
%G en
%F SM_2006_197_6_a0
A. Bak; Yu. V. Muranov. Properties of exponential series with. Sbornik. Mathematics, Tome 197 (2006) no. 6, pp. 791-811. http://geodesic.mathdoc.fr/item/SM_2006_197_6_a0/

[1] A. A. Ranicki, Exact sequences in the algebraic theory of surgery, Math. Notes, 26, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1981 | MR | Zbl

[2] A. A. Ranicki, “The total surgery obstruction”, Algebraic topology, Proc. Sympos. (Univ. Aarhus, Aarhus 1978), Lecture Notes in Math., 763, Springer-Verlag, Berlin, 1979, 275–316 | MR | Zbl

[3] A. Bak, “Odd dimension surgery groups of odd torsion groups vanish”, Topology, 14:4 (1975), 367–374 | DOI | MR | Zbl

[4] A. Bak, “The computation of surgery groups of finite groups with abelian 2-hyperelementary subgroups”, Algebraic $K$-theory, Proc. Conf. (Northwestern Univ., Evanston, IL, 1976), Lecture Notes in Math., 551, Springer-Verlag, Berlin, 1976, 384–409 | MR | Zbl

[5] I. Hambleton, I. Madsen, “On the computation of the projective surgery obstruction groups”, K-theory, 7:6 (1993), 537–574 | DOI | MR | Zbl

[6] C. T. C. Wall, “Classification of Hermitian forms. VI: Group rings”, Ann. of Math. (2), 103:1 (1976), 1–80 | DOI | MR | Zbl

[7] S. C. Ferry, A. A. Ranicki, J. Rosenberg (eds.), Novikov conjectures, index theorems and rigidity, vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[8] A. A. Ranicki, Algebraic $L$-theory and topological manifolds, Cambridge Tracts in Math., 102, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[9] C. T. C. Wall, Surgery on compact manifolds, Second Edition, Math. Surveys Monogr., 69, ed. A. A. Ranicki, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[10] I. Hambleton, A. Ranicki, L. Taylor, “Round $L$-theory”, J. Pure Appl. Algebra, 47:2 (1987), 131–154 | DOI | MR | Zbl

[11] Yu. V. Muranov, I. Khemblton, “Proektivnye gruppy prepyatstvii k rasschepleniyu vdol odnostoronnikh podmnogoobrazii”, Matem. sb., 190:10 (1999), 65–86 | MR | Zbl

[12] Yu. V. Muranov, “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. matem., 59:6 (1995), 107–132 | MR | Zbl

[13] Yu. V. Muranov, D. Repovsh, “Gruppy prepyatstvii k perestroikam i rasschepleniyam dlya pary mnogoobrazii”, Matem. sb., 188:3 (1997), 127–142 | MR | Zbl

[14] R. Switzer, Algebraic topology–homotopy and homology, Grund. Math. Wiss., 212, Springer-Verlag, New York, 1975 | MR | Zbl

[15] S. López de Medrano, Involutions on manifolds, Ergeb. Math. Grezgeb., 59, Springer-Verlag, New York, 1971 | MR | Zbl