@article{SM_2006_197_5_a4,
author = {D. A. Sapronov and A. E. Shishkov},
title = {Asymptotic behaviour of supports of solutions of},
journal = {Sbornik. Mathematics},
pages = {753--790},
year = {2006},
volume = {197},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a4/}
}
D. A. Sapronov; A. E. Shishkov. Asymptotic behaviour of supports of solutions of. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 753-790. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a4/
[1] O. A. Oleinik, Kalashnikov A. S., Chzhou Yui-lin, “Zadacha Koshi i kraevye zadachi dlya uravnenii tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Ser. matem., 22:5 (1958), 667–704 | MR | Zbl
[2] A. S. Kalashnikov, “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (1987), 135–176 | MR | Zbl
[3] E. Di Benedetto, Degenerate parabolic equations, Springer-Verlag, New York, 1993 | MR | Zbl
[4] A. S. Kalashnikov, “O kharaktere rasprostraneniya vozmuschenii v protsessakh, opisyvaemykh kvazilineinymi parabolicheskimi uravneniyami”, Trudy sem. im. I. G. Petrovskogo, no. 1, Izd-vo MGU, M., 1975, 135–144
[5] B. H. Gilding, L. A. Peletier, “The Cauchy problem for an equation in the theory of infiltration”, Arch. Ration. Mech. Anal., 61 (1976), 127–140 | DOI | MR | Zbl
[6] J. I. Diaz, R. Kersner, “On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium”, J. Differential Equations, 69 (1987), 368–403 | DOI | MR | Zbl
[7] B. H. Gilding, “Improved theory for a nonlinear degenerate parabolic equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16:2 (1989), 165–224 | MR | Zbl
[8] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[9] Yu. A. Dubinskii, “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, VINITI, M., 1976, 5–130
[10] O. Grange, F. Mignot, “Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires”, J. Funct. Anal., 11:1 (1972), 77–92 | DOI | MR | Zbl
[11] F. Bernis, “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279:3 (1988), 373–394 | DOI | MR | Zbl
[12] H. W. Alt, S. Luckhaus, “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183 (1983), 311–341 | DOI | MR | Zbl
[13] Ph. Benilan, P. Wittbold, “On mild and weak solutions of elliptic-parabolic problems”, Adv. Differential Equations, 1:6 (1996), 1053–1073 | MR | Zbl
[14] L. Alvarez, J. I. Diaz, R. Kersner, “On the initial growth of the interfaces in nonlinear diffusion-convection processes”, Nonlinear diffusion equations and their equilibrium states I, eds. W.-M. Ni, L. A. Peletier, J. Serrin, Springer-Verlag, New York, 1987, 1–20 | MR
[15] L. Alvarez, J. I. Diaz, “Sufficiant and necessary initial mass conditions for the existence of a waiting time in nonlinear-convection processes”, J. Math. Anal. Appl., 155 (1991), 378–393 | DOI | MR
[16] B. H. Gilding, “Properties of solutions of an equation in the theory of infiltration”, Arch. Ration. Mech. Anal., 65 (1977), 203–225 | DOI | MR | Zbl
[17] R. E. Grundy, “Asymptotic solution of a model nonlinear convective diffusion eauation”, IMA J. Appl. Math., 31 (1983), 121–137 | DOI | MR
[18] Ph. Laurencot, F. Simondon, Sourse-type solutions to porous medium equations with convection, Preprint No. 96/17, Universite de Franche Comte | MR
[19] Ph. Laurencot, F. Simondon, Sourse-type solutions to porous medium equations with convection II, Preprint No. 96/33, Universite de Franche Comte | MR
[20] J. I. Diaz, R. Kersner, “Non existence d'une des frontières libres dans une équation dégénerée en théorie de la filtration”, C. R. Acad. Sci. Paris Ser. I Math., 296 (1983), 505–508 | MR | Zbl
[21] B. H. Gilding, “The occurrence of interfaces in nonlinear diffusion-advection processes”, Arch. Ration. Mech. Anal., 100:3 (1988), 243–263 | DOI | MR | Zbl
[22] B. H. Gilding, R. Kersner, “Instantaneous shrinking in nonlinear diffusion-convection”, Proc. Amer. Math. Soc., 109:2 (1990), 385–394 | DOI | MR | Zbl
[23] A. E. Shishkov, “Instantaneous shrinking phenomenon for solutions of higher-dimensional nonlinear diffusion-convection equations”, Methods Funct. Anal. Topology, 5:3 (1999), 54–76 | MR | Zbl
[24] M. Guedda, D. Hilhorst, C. Picard, “The one-dimensional porous medium equation with convection: Continuous differentiability of interfaces after the waiting time”, Appl. Math. Lett., 5:1 (1992), 59–62 | DOI | MR | Zbl
[25] S. Bonafede, G. R. Cirmi, A. F. Tedeev, “Finite speed of propagation for the porous media equation with lower order terms”, Discrete Contin. Dynam. Systems, 6:2 (2000), 305–314 | DOI | MR | Zbl
[26] B. Gilding, A. E. Shishkov, “Rasprostranenie nositelei reshenii uravnenii tipa mnogomernoi nelineinoi diffuzii s konvektsiei”, UMN, 53:4 (1998), 142
[27] D. A. Sapronov, A. E. Shishkov, “Rasprostranenie vozmuschenii v kvazilineinykh mnogomernykh parabolicheskikh uravneniyakh s konvektivnym chlenom”, Ukr. matem. zhurn., 53:7 (2001), 953–969 | MR | Zbl
[28] E. Zuazua, “Weakly nonlinear large time behavior in scalar convection-diffusion equations”, Differential Integral Equations, 6:6 (1993), 1481–1491 | MR | Zbl
[29] S. Claudi, F. R. Guarguaglini, “Large time behaviour for the heat equation with absorption and convection”, Adv. Appl. Math., 16:4 (1995), 377–401 | DOI | MR | Zbl
[30] F. Bernis, “Qualitative properties for some nonlinear higher order degenerate parabolic equations”, Houston J. Math., 14:3 (1988), 319–352 | MR | Zbl
[31] O. A. Oleinik, G. A. Iosifyan, “Analog printsipa Sen-Venana i edinstvennost reshenii kraevykh zadach v neogranichennykh oblastyakh dlya parabolicheskikh uravnenii”, UMN, 31:6 (1976), 142–166 | MR | Zbl