Isentropic solutions of quasilinear equations of the first order
Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 727-752

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for the existence of non-trivial isentropic solutions of quasilinear conservation laws are found. Applications to the problem of the functional dependence between partial derivatives of a smooth function of two variables are presented. In particular, necessary conditions on a function $\varphi$ for the equation $\dfrac{\partial v}{\partial t} =\varphi\biggl(\dfrac{\partial v}{\partial x}\biggr)$ to have non-trivial $C^1$-smooth solutions are found. Bibliography: 13 titles.
@article{SM_2006_197_5_a3,
     author = {M. V. Korobkov and E. Yu. Panov},
     title = {Isentropic solutions of quasilinear equations of the first order},
     journal = {Sbornik. Mathematics},
     pages = {727--752},
     publisher = {mathdoc},
     volume = {197},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/}
}
TY  - JOUR
AU  - M. V. Korobkov
AU  - E. Yu. Panov
TI  - Isentropic solutions of quasilinear equations of the first order
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 727
EP  - 752
VL  - 197
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/
LA  - en
ID  - SM_2006_197_5_a3
ER  - 
%0 Journal Article
%A M. V. Korobkov
%A E. Yu. Panov
%T Isentropic solutions of quasilinear equations of the first order
%J Sbornik. Mathematics
%D 2006
%P 727-752
%V 197
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/
%G en
%F SM_2006_197_5_a3
M. V. Korobkov; E. Yu. Panov. Isentropic solutions of quasilinear equations of the first order. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 727-752. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/