Isentropic solutions of quasilinear equations of the first order
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 727-752
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Conditions for the existence of non-trivial isentropic
solutions of quasilinear conservation laws are found. Applications
to the problem of the functional dependence between partial
derivatives of a smooth function of two variables are presented.
In particular, necessary conditions on a function $\varphi$
for the equation
$\dfrac{\partial v}{\partial t}
=\varphi\biggl(\dfrac{\partial v}{\partial x}\biggr)$
to have non-trivial $C^1$-smooth solutions are   found.
Bibliography: 13 titles.
			
            
            
            
          
        
      @article{SM_2006_197_5_a3,
     author = {M. V. Korobkov and E. Yu. Panov},
     title = {Isentropic solutions of quasilinear equations of the first order},
     journal = {Sbornik. Mathematics},
     pages = {727--752},
     publisher = {mathdoc},
     volume = {197},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/}
}
                      
                      
                    M. V. Korobkov; E. Yu. Panov. Isentropic solutions of quasilinear equations of the first order. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 727-752. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/
