@article{SM_2006_197_5_a3,
author = {M. V. Korobkov and E. Yu. Panov},
title = {Isentropic solutions of quasilinear equations of the first order},
journal = {Sbornik. Mathematics},
pages = {727--752},
year = {2006},
volume = {197},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/}
}
M. V. Korobkov; E. Yu. Panov. Isentropic solutions of quasilinear equations of the first order. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 727-752. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/
[1] E. Yu. Panov, Obobschennye resheniya zadachi Koshi dlya kvazilineinykh zakonov sokhraneniya, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1991
[2] S. N. Kruzhkov, “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 187:1 (1969), 29–32 | Zbl
[3] S. N. Kruzhkov, “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl
[4] E. Yu. Panov, “K teorii obobschennykh entropiinykh reshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka v klasse lokalno summiruemykh funktsii”, Izv. RAN. Ser. matem., 66:6 (2002), 91–136 | MR | Zbl
[5] S. N. Kruzhkov, E. Yu. Panov, “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, Dokl. AN SSSR, 314:1 (1990), 79–84 | MR | Zbl
[6] S. N. Kruzhkov, E. Yu. Panov, “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1996), 31–54 | MR | Zbl
[7] E. Yu. Panov, “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl
[8] A. Yu. Goritskii, E. Yu. Panov, “O lokalno ogranichennykh obobschennykh entropiinykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Tr. MIAN, 236, 2002, 120–133 | MR
[9] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[10] M. Khirsh, Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl
[11] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974
[12] J. Malý, “The Darboux property for gradients”, Real Anal. Exchange, 22:1 (1996/97), 167–173 | MR | Zbl
[13] M. V. Korobkov, “Ob odnom obobschenii teoremy Darbu na mnogomernyi sluchai”, Sib. matem. zhurn., 41:1 (2000), 118–133 | MR | Zbl