Isentropic solutions of quasilinear equations of the first order
Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 727-752 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions for the existence of non-trivial isentropic solutions of quasilinear conservation laws are found. Applications to the problem of the functional dependence between partial derivatives of a smooth function of two variables are presented. In particular, necessary conditions on a function $\varphi$ for the equation $\dfrac{\partial v}{\partial t} =\varphi\biggl(\dfrac{\partial v}{\partial x}\biggr)$ to have non-trivial $C^1$-smooth solutions are found. Bibliography: 13 titles.
@article{SM_2006_197_5_a3,
     author = {M. V. Korobkov and E. Yu. Panov},
     title = {Isentropic solutions of quasilinear equations of the first order},
     journal = {Sbornik. Mathematics},
     pages = {727--752},
     year = {2006},
     volume = {197},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/}
}
TY  - JOUR
AU  - M. V. Korobkov
AU  - E. Yu. Panov
TI  - Isentropic solutions of quasilinear equations of the first order
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 727
EP  - 752
VL  - 197
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/
LA  - en
ID  - SM_2006_197_5_a3
ER  - 
%0 Journal Article
%A M. V. Korobkov
%A E. Yu. Panov
%T Isentropic solutions of quasilinear equations of the first order
%J Sbornik. Mathematics
%D 2006
%P 727-752
%V 197
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/
%G en
%F SM_2006_197_5_a3
M. V. Korobkov; E. Yu. Panov. Isentropic solutions of quasilinear equations of the first order. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 727-752. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a3/

[1] E. Yu. Panov, Obobschennye resheniya zadachi Koshi dlya kvazilineinykh zakonov sokhraneniya, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1991

[2] S. N. Kruzhkov, “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 187:1 (1969), 29–32 | Zbl

[3] S. N. Kruzhkov, “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl

[4] E. Yu. Panov, “K teorii obobschennykh entropiinykh reshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka v klasse lokalno summiruemykh funktsii”, Izv. RAN. Ser. matem., 66:6 (2002), 91–136 | MR | Zbl

[5] S. N. Kruzhkov, E. Yu. Panov, “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, Dokl. AN SSSR, 314:1 (1990), 79–84 | MR | Zbl

[6] S. N. Kruzhkov, E. Yu. Panov, “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1996), 31–54 | MR | Zbl

[7] E. Yu. Panov, “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl

[8] A. Yu. Goritskii, E. Yu. Panov, “O lokalno ogranichennykh obobschennykh entropiinykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Tr. MIAN, 236, 2002, 120–133 | MR

[9] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[10] M. Khirsh, Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[11] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974

[12] J. Malý, “The Darboux property for gradients”, Real Anal. Exchange, 22:1 (1996/97), 167–173 | MR | Zbl

[13] M. V. Korobkov, “Ob odnom obobschenii teoremy Darbu na mnogomernyi sluchai”, Sib. matem. zhurn., 41:1 (2000), 118–133 | MR | Zbl