Branching extremals of the functional of $\lambda$-normed length
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 705-726
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Networks on $\lambda$-normed planes are considered, that is, on
normed planes for which the unit circle is a regular $2\lambda$-gon.
A geometric criterion is given for an arbitrary tree to be extremal
on the $\lambda$-normed plane, where $\lambda\ne2,3,4,6$. Problems of
$\lambda$-minimal (extremal) realization of an arbitrary network
and of convergence of $\lambda$-extremal networks as
$\lambda\to\infty$ are also considered.
Bibliography: 17 titles.
			
            
            
            
          
        
      @article{SM_2006_197_5_a2,
     author = {D. P. Il'yutko},
     title = {Branching extremals of the functional of $\lambda$-normed length},
     journal = {Sbornik. Mathematics},
     pages = {705--726},
     publisher = {mathdoc},
     volume = {197},
     number = {5},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a2/}
}
                      
                      
                    D. P. Il'yutko. Branching extremals of the functional of $\lambda$-normed length. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 705-726. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a2/
