Branching extremals of the functional of $\lambda$-normed length
Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 705-726 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Networks on $\lambda$-normed planes are considered, that is, on normed planes for which the unit circle is a regular $2\lambda$-gon. A geometric criterion is given for an arbitrary tree to be extremal on the $\lambda$-normed plane, where $\lambda\ne2,3,4,6$. Problems of $\lambda$-minimal (extremal) realization of an arbitrary network and of convergence of $\lambda$-extremal networks as $\lambda\to\infty$ are also considered. Bibliography: 17 titles.
@article{SM_2006_197_5_a2,
     author = {D. P. Il'yutko},
     title = {Branching extremals of the functional of $\lambda$-normed length},
     journal = {Sbornik. Mathematics},
     pages = {705--726},
     year = {2006},
     volume = {197},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a2/}
}
TY  - JOUR
AU  - D. P. Il'yutko
TI  - Branching extremals of the functional of $\lambda$-normed length
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 705
EP  - 726
VL  - 197
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_5_a2/
LA  - en
ID  - SM_2006_197_5_a2
ER  - 
%0 Journal Article
%A D. P. Il'yutko
%T Branching extremals of the functional of $\lambda$-normed length
%J Sbornik. Mathematics
%D 2006
%P 705-726
%V 197
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2006_197_5_a2/
%G en
%F SM_2006_197_5_a2
D. P. Il'yutko. Branching extremals of the functional of $\lambda$-normed length. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 705-726. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a2/

[1] D. Z. Du, F. K. Hwang, J. F. Weng, “Steiner minimal trees for regular polygons”, Discrete Comput. Geom., 2 (1987), 65–84 | DOI | MR | Zbl

[2] P. de Fermat, Abhandlungen über Maxima und Minima, Akad. Verlagsges., Leipzig, 1934 | Zbl

[3] V. Jarnik, M. Kössler, “O minimalnich grafeth obeahujiicich $n$ danijch bodu”, Cas. Mat. Fys., 63 (1934), 223–235 | MR | Zbl

[4] W. D. Smith, “How to find Steiner minimal trees in Euclidean $d$-space”, Algorithmica, 7 (1992), 137–177 | DOI | MR | Zbl

[5] M. Hanan, “On Steiner's problem with rectilinear distance”, SIAM J. Appl. Math., 14 (1966), 255–265 | DOI | MR | Zbl

[6] F. K. Hwang, “On Steiner minimal trees with rectilinear distance”, SIAM J. Appl. Math., 30 (1976), 104–114 | DOI | MR | Zbl

[7] M. R. Garey, D. S. Johnson, “The rectilinear Steiner problem is $NP$-complete”, SIAM J. Appl. Math., 32 (1977), 826–834 | DOI | MR | Zbl

[8] G. A. Karpunin, “Analog teorii Morsa dlya ploskikh lineinykh setei i obobschennaya problema Shteinera”, Matem. sb., 191:2 (2000), 64–90 | MR | Zbl

[9] G. A. Karpunin, Teoriya Morsa minimalnykh setei, Dis. ... kand. fiz.-matem. nauk, MGU, M., 2001

[10] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M., Izhevsk, 2003

[11] M. Sarrafzadeh, C. K. Wong, “Hierarchical Steiner tree construction in uniform orientations”, IEEE Trans. Computer-Aided Design, 11:9 (1992), 1095–1103 | DOI | MR

[12] D. T. Lee, C. F. Shen, “The Steiner minimal tree problem in the $\lambda$-geometry plane”, Algorithms and computation (Osaka, 1996), Lecture Notes in Comput. Sci., 1178, Springer-Verlag, 1996, 247–255 | MR

[13] K. J. Swanepoel, “The local Steiner problem in normed planes”, Networks, 36:2 (2000), 104–113 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[14] D. P. Ilyutko, “Lokalno minimalnye seti v $N$-normirovannykh prostranstvakh”, Matem. zametki, 74:5 (2003), 656–668 | MR

[15] D. P. Ilyutko, “$N$-normirovannye ploskosti”, v kn.: A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M., Izhevsk, 2003, 319–341

[16] A. O. Ivanov, A. A. Tuzhilin, Branching solutions to one-dimensional variational problems, World Scientific, Singapore, 2001 | MR

[17] A. O. Ivanov, A. A. Tuzhilin, Razvetvlennye geodezicheskie. Geometricheskaya teoriya lokalno minimalnykh setei, The Edwin Mellen Press, Lewiston, Queenston, Lampeter, 1999