@article{SM_2006_197_5_a1,
author = {D. G. Il'inskii},
title = {Almost free action of the one-dimensional torus},
journal = {Sbornik. Mathematics},
pages = {681--703},
year = {2006},
volume = {197},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_5_a1/}
}
D. G. Il'inskii. Almost free action of the one-dimensional torus. Sbornik. Mathematics, Tome 197 (2006) no. 5, pp. 681-703. http://geodesic.mathdoc.fr/item/SM_2006_197_5_a1/
[1] A. Hattori, “Circle actions on symplectic manifolds”, Lecture Notes in Math., 1375, 1989, 89–97 | MR | Zbl
[2] A. Hattori, “Symplectic manifolds with semi-free Hamiltonian $S^1$-actions”, Tokyo J. Math., 15:2 (1992), 281–296 | MR | Zbl
[3] S. Tolman, J. Weitsman, “On semifree symplectic circle actions with isolated fixed points”, Topology, 39:2 (2000), 299–309 | DOI | MR | Zbl
[4] M. Audin, “Hamiltoniens périodiques sur les variétés symplectiques compactes de dimension 4”, Géométrie symplectique et mécanique, Colloq. Int. Sémin. Sud-Rhodan. Géom. V (La Grande Motte/Fr. 1988), Lecture Notes in Math., 1416, Springer, 1990, 1–25 | MR | Zbl
[5] K. Ahara, A. Hattori, “4-dimensional symplectic $S^1$-manifolds admitting moment map”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38:2 (1991), 251–298 | MR | Zbl
[6] C. T. C. Wall, “Classification problems in differential topology. V: On certain 6-manifolds”, Invent. Math., 1 (1966), 355–374 | DOI | MR
[7] W. Fulton, Introduction to toric varieties, The 1989 William H. Roever lectures in geometry, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[8] V. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–154 | MR | Zbl
[9] D. A. Cox, “The homogenious coordinate ring of a toric variety”, J. Algebraic Geom., 4:1 (1995), 17–50 | MR | Zbl
[10] J. B. Carrell, “Torus actions and cohomology”, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia Math. Sci., 131, Springer, Berlin, 2002, 83–158 | MR | Zbl