Ascending chain condition for the set of canonical thresholds of toric varieties
Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 623-631 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the ascending chain condition holds for the set of canonical thresholds of pairs consisting of a toric variety and an invariant linear system. Bibliography: 8 titles.
@article{SM_2006_197_4_a5,
     author = {K. A. Shramov},
     title = {Ascending chain condition for the set of canonical thresholds of toric varieties},
     journal = {Sbornik. Mathematics},
     pages = {623--631},
     year = {2006},
     volume = {197},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_4_a5/}
}
TY  - JOUR
AU  - K. A. Shramov
TI  - Ascending chain condition for the set of canonical thresholds of toric varieties
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 623
EP  - 631
VL  - 197
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_4_a5/
LA  - en
ID  - SM_2006_197_4_a5
ER  - 
%0 Journal Article
%A K. A. Shramov
%T Ascending chain condition for the set of canonical thresholds of toric varieties
%J Sbornik. Mathematics
%D 2006
%P 623-631
%V 197
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2006_197_4_a5/
%G en
%F SM_2006_197_4_a5
K. A. Shramov. Ascending chain condition for the set of canonical thresholds of toric varieties. Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 623-631. http://geodesic.mathdoc.fr/item/SM_2006_197_4_a5/

[1] V. Shokurov, “Problems about Fano varieties”, Birational geometry of algebraic varieties: open problems, 23 International Symposium, Division of Mathematics, Taniguchi Foundation, Katata, 1988, 30–32

[2] J. Kollár (ed.), Flips and abundance for algebraic threefolds, Papers from the Second Summer Seminar on Algebraic Geometry (University of Utah, Salt Lake City, UT, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR

[3] J. McKernan, Yu. Prokhorov, “Threefold thresholds”, Manuscripta Math., 114:3 (2004), 281–304 | DOI | MR | Zbl

[4] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002 | MR | Zbl

[5] A. Borisov, Minimal discrepancies of toric singularities, arXiv: math.AG/9403012 | MR

[6] V. I. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[7] J. Kollár, “Singularities of pairs”, Algebraic geometry (Santa Cruz, CA, USA, 1995), Proc. Symp. Pure. Math., 62, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl

[8] M. Reid, “Young person's guide to canonical singularities”, Proc. Sympos. Pure Math., 46 (1987), 345–414 | MR | Zbl