@article{SM_2006_197_4_a5,
author = {K. A. Shramov},
title = {Ascending chain condition for the set of canonical thresholds of toric varieties},
journal = {Sbornik. Mathematics},
pages = {623--631},
year = {2006},
volume = {197},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_4_a5/}
}
K. A. Shramov. Ascending chain condition for the set of canonical thresholds of toric varieties. Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 623-631. http://geodesic.mathdoc.fr/item/SM_2006_197_4_a5/
[1] V. Shokurov, “Problems about Fano varieties”, Birational geometry of algebraic varieties: open problems, 23 International Symposium, Division of Mathematics, Taniguchi Foundation, Katata, 1988, 30–32
[2] J. Kollár (ed.), Flips and abundance for algebraic threefolds, Papers from the Second Summer Seminar on Algebraic Geometry (University of Utah, Salt Lake City, UT, 1991), Astérisque, 211, Soc. Math. France, Paris, 1992 | MR
[3] J. McKernan, Yu. Prokhorov, “Threefold thresholds”, Manuscripta Math., 114:3 (2004), 281–304 | DOI | MR | Zbl
[4] K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002 | MR | Zbl
[5] A. Borisov, Minimal discrepancies of toric singularities, arXiv: math.AG/9403012 | MR
[6] V. I. Danilov, “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl
[7] J. Kollár, “Singularities of pairs”, Algebraic geometry (Santa Cruz, CA, USA, 1995), Proc. Symp. Pure. Math., 62, Amer. Math. Soc., Providence, RI, 1997, 221–287 | MR | Zbl
[8] M. Reid, “Young person's guide to canonical singularities”, Proc. Sympos. Pure Math., 46 (1987), 345–414 | MR | Zbl