The Maxwell set in the generalized Dido problem
Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 595-621 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The generalized Dido problem is considered — a model of the nilpotent sub-Riemannian problem with the growth vector $(2,3,5)$. We study the Maxwell set, that is, the locus of the intersection points of geodesics of equal lengths. A general description is obtained for the Maxwell strata corresponding to the symmetry group of the exponential map generated by rotations and reflections. The invariant and graphic meaning of these strata is clarified. Bibliography: 19 titles.
@article{SM_2006_197_4_a4,
     author = {Yu. L. Sachkov},
     title = {The {Maxwell} set in the generalized {Dido} problem},
     journal = {Sbornik. Mathematics},
     pages = {595--621},
     year = {2006},
     volume = {197},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - The Maxwell set in the generalized Dido problem
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 595
EP  - 621
VL  - 197
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/
LA  - en
ID  - SM_2006_197_4_a4
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T The Maxwell set in the generalized Dido problem
%J Sbornik. Mathematics
%D 2006
%P 595-621
%V 197
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/
%G en
%F SM_2006_197_4_a4
Yu. L. Sachkov. The Maxwell set in the generalized Dido problem. Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 595-621. http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/

[1] Yu. L. Sachkov, “Eksponentsialnoe otobrazhenie v obobschennoi zadache Didony”, Matem. sb., 194:9 (2003), 63–90 | MR | Zbl

[2] A. A. Agrachev, A. V. Sarychev, “Filtratsiya algebry Li vektornykh polei i nilpotentnaya approksimatsiya upravlyaemykh sistem”, Dokl. AN SSSR, 295:4 (1987), 777–781 | MR

[3] A. Bellaiche, “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, Progr. Math., 144, eds. A. Bellaiche, J.-J. Risler, Birkhäuser, Basel, 1996, 1–78 | MR | Zbl

[4] A. A. Agrachev, Yu. L. Sachkov, “An intrinsic approach to the control of rolling bodies”, Proceedings of the 38-th IEEE Conference on Decision and Control (Phoenix, Arizona, USA, December 7–10, 1999), 1, IEEE, Piscataway, NJ, 1999, 431–435

[5] Yu. L. Sachkov, “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl

[6] Yu. L. Sachkov, “Diskretnye simmetrii v obobschennoi zadache Didony”, Matem. sb., 197:2 (2006), 95–116 | MR

[7] Yu. L. Sachkov, “Polnoe opisanie stratov Maksvella v obobschennoi zadache Didony”, Matem. sb., 197:6 (2006), 111–160

[8] S. Wolfram, Mathematica: a system for doing mathematics by computer, Addison-Wesley, Reading, MA, 1992

[9] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl

[10] S. Jacquet, Regularity of sub-Riemannian distance and cut locus, Preprint No 35, Univ. Stud. Firenze, Firenze, Italy, 1999

[11] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996 | MR | Zbl

[12] A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl

[13] O. Myasnichenko, “Nilpotent $(3,6)$ sub-Riemannian problem”, J. Dynam. Control Systems, 8:4 (2002), 573–597 | DOI | MR | Zbl

[14] F. Griffits, Vneshnie differentsialnye sistemy i variatsionnoe ischislenie, Mir, M., 1986 | MR

[15] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[16] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1981 | MR

[17] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy i geometriya raspredelenii”, Dinamicheskie sistemy – 7, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1986, 5–85 | MR

[18] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, Fizmatlit, M., 1970 | MR | Zbl

[19] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, URSS, M., 2002