@article{SM_2006_197_4_a4,
author = {Yu. L. Sachkov},
title = {The {Maxwell} set in the generalized {Dido} problem},
journal = {Sbornik. Mathematics},
pages = {595--621},
year = {2006},
volume = {197},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/}
}
Yu. L. Sachkov. The Maxwell set in the generalized Dido problem. Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 595-621. http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/
[1] Yu. L. Sachkov, “Eksponentsialnoe otobrazhenie v obobschennoi zadache Didony”, Matem. sb., 194:9 (2003), 63–90 | MR | Zbl
[2] A. A. Agrachev, A. V. Sarychev, “Filtratsiya algebry Li vektornykh polei i nilpotentnaya approksimatsiya upravlyaemykh sistem”, Dokl. AN SSSR, 295:4 (1987), 777–781 | MR
[3] A. Bellaiche, “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, Progr. Math., 144, eds. A. Bellaiche, J.-J. Risler, Birkhäuser, Basel, 1996, 1–78 | MR | Zbl
[4] A. A. Agrachev, Yu. L. Sachkov, “An intrinsic approach to the control of rolling bodies”, Proceedings of the 38-th IEEE Conference on Decision and Control (Phoenix, Arizona, USA, December 7–10, 1999), 1, IEEE, Piscataway, NJ, 1999, 431–435
[5] Yu. L. Sachkov, “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl
[6] Yu. L. Sachkov, “Diskretnye simmetrii v obobschennoi zadache Didony”, Matem. sb., 197:2 (2006), 95–116 | MR
[7] Yu. L. Sachkov, “Polnoe opisanie stratov Maksvella v obobschennoi zadache Didony”, Matem. sb., 197:6 (2006), 111–160
[8] S. Wolfram, Mathematica: a system for doing mathematics by computer, Addison-Wesley, Reading, MA, 1992
[9] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl
[10] S. Jacquet, Regularity of sub-Riemannian distance and cut locus, Preprint No 35, Univ. Stud. Firenze, Firenze, Italy, 1999
[11] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996 | MR | Zbl
[12] A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl
[13] O. Myasnichenko, “Nilpotent $(3,6)$ sub-Riemannian problem”, J. Dynam. Control Systems, 8:4 (2002), 573–597 | DOI | MR | Zbl
[14] F. Griffits, Vneshnie differentsialnye sistemy i variatsionnoe ischislenie, Mir, M., 1986 | MR
[15] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[16] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1981 | MR
[17] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy i geometriya raspredelenii”, Dinamicheskie sistemy – 7, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1986, 5–85 | MR
[18] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, Fizmatlit, M., 1970 | MR | Zbl
[19] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, URSS, M., 2002