The Maxwell set in the generalized Dido problem
Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 595-621

Voir la notice de l'article provenant de la source Math-Net.Ru

The generalized Dido problem is considered — a model of the nilpotent sub-Riemannian problem with the growth vector $(2,3,5)$. We study the Maxwell set, that is, the locus of the intersection points of geodesics of equal lengths. A general description is obtained for the Maxwell strata corresponding to the symmetry group of the exponential map generated by rotations and reflections. The invariant and graphic meaning of these strata is clarified. Bibliography: 19 titles.
@article{SM_2006_197_4_a4,
     author = {Yu. L. Sachkov},
     title = {The {Maxwell} set in the generalized {Dido} problem},
     journal = {Sbornik. Mathematics},
     pages = {595--621},
     publisher = {mathdoc},
     volume = {197},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - The Maxwell set in the generalized Dido problem
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 595
EP  - 621
VL  - 197
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/
LA  - en
ID  - SM_2006_197_4_a4
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T The Maxwell set in the generalized Dido problem
%J Sbornik. Mathematics
%D 2006
%P 595-621
%V 197
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/
%G en
%F SM_2006_197_4_a4
Yu. L. Sachkov. The Maxwell set in the generalized Dido problem. Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 595-621. http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/