The Maxwell set in the generalized Dido problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 595-621
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The generalized Dido problem is considered — a model of the nilpotent sub-Riemannian problem with the growth vector $(2,3,5)$. We study the Maxwell set, that is, the locus of the intersection points of geodesics of equal lengths. A general description is obtained for the Maxwell strata corresponding to the symmetry group of the exponential map generated by rotations and reflections. The invariant and graphic meaning of these strata is clarified.
Bibliography: 19 titles.
			
            
            
            
          
        
      @article{SM_2006_197_4_a4,
     author = {Yu. L. Sachkov},
     title = {The {Maxwell} set in the generalized {Dido} problem},
     journal = {Sbornik. Mathematics},
     pages = {595--621},
     publisher = {mathdoc},
     volume = {197},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/}
}
                      
                      
                    Yu. L. Sachkov. The Maxwell set in the generalized Dido problem. Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 595-621. http://geodesic.mathdoc.fr/item/SM_2006_197_4_a4/
