@article{SM_2006_197_4_a3,
author = {N. \'E. Klinshpont},
title = {On the topological classification of {Lorenz-type} attractors},
journal = {Sbornik. Mathematics},
pages = {547--593},
year = {2006},
volume = {197},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2006_197_4_a3/}
}
N. É. Klinshpont. On the topological classification of Lorenz-type attractors. Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 547-593. http://geodesic.mathdoc.fr/item/SM_2006_197_4_a3/
[1] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[2] J. B. McLaughlin, P. C. Martin, “Transition to turbulence of statically stressed fluids”, Phys. Rev. Lett., 39:20 (1974), 1189–1192 | DOI
[3] J. A. Yorke, E. D. Yorke, “Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model”, J. Stat. Phys., 21:3 (1979), 263–377 | DOI | MR
[4] M. Viana, “What's new on Lorenz strange attractors?”, Math. Intelligencer, 22:3 (2000), 6–19 | DOI | MR | Zbl
[5] V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Trudy MMO, no. 44, 1982, 150–212 | MR | Zbl
[6] J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, Part 12. J. Guckenheimer. The strange, strange attractor, Springer-Verlag, New York, 1976 | MR
[7] J. Guckenheimer, R. F. Williams, “Structural stability of Lorenz attractors”, Inst. Hautes Étud. Sci. Publ. Math., 50 (1979), 59–72 | DOI | MR | Zbl
[8] D. V. Anosov, Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Trudy MIAN, 90, Nauka, M., 1967 | MR
[9] C. Pugh, M. Shub, “Ergodic attractors”, Trans. Amer. Math. Soc., 312:1 (1989), 1–54 | DOI | MR | Zbl
[10] A. B. Katok, J. M. Strelcyn, F. Ledrappier, F. Przytycki, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Math., 1222, Springer-Verlag, Berlin, 1986 | MR | Zbl
[11] R. F. Williams, “The structure of Lorenz attractors”, Turbulence seminar (Univ. Calif., Berkeley, CA, 1976/77), Lecture Notes in Math., 615, Springer-Verlag, Berlin, 1977, 94–112 | MR
[12] R. F. Williams, “The structure of Lorenz attractors”, Inst. Hautes Étud. Sci. Publ. Math., 50 (1979), 73–99 | DOI | MR | Zbl
[13] W. Tucker, “A rigorous ODE solver and Smale's 14th problem”, Found. Comput. Math., 2:1 (2002), 53–117 | MR | Zbl
[14] N. E. Klinshpont, “The topological invariant of the Lorenz's type attractors”, Appendix to R. V. Plykin, A. Ju. Zhirov, Some problems of attractors of dynamical systems, Topology Appl., 54:1–3 (1993), 39–46 | MR
[15] N. E. Klinshpont, “Topologicheskii invariant attraktora Lorentsa”, UMN, 47:2 (1992), 195–196 | MR | Zbl
[16] N. Stinrod, S. Eilenberg, Osnovaniya algebraicheskoi topologii, Fizmatgiz, M., 1958