On the topological classification of Lorenz-type attractors
Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 547-593

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization is considered of Williams's well-known model of the attractor in the Lorenz system, the inverse limit of semiflows on branched manifolds that are suspensions over a discontinuous expanding map of a closed line interval. The generalization consists in the consideration of maps with several, rather than one, discontinuity points. A cardinal-valued topological invariant L-manuscript is constructed, which distinguishes a continuum of non-homeomorphic generalized models. A topological invariant distinguishing a continuum of non-homeomorphic geometric Lorenz attractors is obtained as a consequence. Bibliography: 16 titles.
@article{SM_2006_197_4_a3,
     author = {N. \'E. Klinshpont},
     title = {On the topological classification of {Lorenz-type} attractors},
     journal = {Sbornik. Mathematics},
     pages = {547--593},
     publisher = {mathdoc},
     volume = {197},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_4_a3/}
}
TY  - JOUR
AU  - N. É. Klinshpont
TI  - On the topological classification of Lorenz-type attractors
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 547
EP  - 593
VL  - 197
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_4_a3/
LA  - en
ID  - SM_2006_197_4_a3
ER  - 
%0 Journal Article
%A N. É. Klinshpont
%T On the topological classification of Lorenz-type attractors
%J Sbornik. Mathematics
%D 2006
%P 547-593
%V 197
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2006_197_4_a3/
%G en
%F SM_2006_197_4_a3
N. É. Klinshpont. On the topological classification of Lorenz-type attractors. Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 547-593. http://geodesic.mathdoc.fr/item/SM_2006_197_4_a3/