Deficiency indices and spectrum of self-adjoint extensions of some classes of differential operators
Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 525-546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Problems relating to the asymptotic behaviour in the neighbourhood of the point $+\infty$ and in the neighbourhood of the origin of a solution of an equation $l_ny=\lambda y$ of arbitrary (even or odd) order with complex-valued coefficients are studied. It is assumed here that the coefficients of the quasidifferential expression $l_n$ have the following property: if one reduces the equation $l_ny=\lambda y$ to a system of first-order differential equations, then one can transform that system to a system of differential equations with regular singular point at $x=\infty$ or $x=0$. The results obtained allow one to determine the deficiency indices of the corresponding minimal symmetric differential operators and the structure of the spectrum of self-adjoint extensions of these operators. In addition, on the basis of refined asymptotic formulae for solutions to the equation $l_ny=\lambda y$ the deficiency numbers of a certain differential operator generated by a differential expression with leading coefficient vanishing in the interior of the interval in question are found. Bibliography: 14 titles.
@article{SM_2006_197_4_a2,
     author = {I. N. Dolgikh and K. A. Mirzoev},
     title = {Deficiency indices and spectrum of self-adjoint extensions of some classes of differential operators},
     journal = {Sbornik. Mathematics},
     pages = {525--546},
     year = {2006},
     volume = {197},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_4_a2/}
}
TY  - JOUR
AU  - I. N. Dolgikh
AU  - K. A. Mirzoev
TI  - Deficiency indices and spectrum of self-adjoint extensions of some classes of differential operators
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 525
EP  - 546
VL  - 197
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_4_a2/
LA  - en
ID  - SM_2006_197_4_a2
ER  - 
%0 Journal Article
%A I. N. Dolgikh
%A K. A. Mirzoev
%T Deficiency indices and spectrum of self-adjoint extensions of some classes of differential operators
%J Sbornik. Mathematics
%D 2006
%P 525-546
%V 197
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2006_197_4_a2/
%G en
%F SM_2006_197_4_a2
I. N. Dolgikh; K. A. Mirzoev. Deficiency indices and spectrum of self-adjoint extensions of some classes of differential operators. Sbornik. Mathematics, Tome 197 (2006) no. 4, pp. 525-546. http://geodesic.mathdoc.fr/item/SM_2006_197_4_a2/

[1] W. N. Everitt, L. Marcus, Boundary value problems and symplectic algebra for ordinary differential and quasi-differetial operators, Math. Surveys Monogr., 61, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[2] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, Fizmatlit, M., 1969 | MR

[3] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, Mir, M., 1966

[4] W. N. Everitt, A. Zettl, “Generalized symmetric ordinary differential expression. I: The general theory”, Nieuw Arch. Wisk. (3), 27:3 (1979), 363–397 | MR | Zbl

[5] S. A. Orlov, “Ob indekse defekta lineinykh differentsialnykh operatorov”, Dokl. AN SSSR, 92:3 (1953), 483–486 | MR | Zbl

[6] F. A. Neimark, “Ob indekse defekta differentsialnogo operatora”, UMN, 17:4 (1962), 157–163 | MR | Zbl

[7] R. B. Paris, A. D. Wood, “On the $\mathscr L_2(I)$ nature of solutions of $n$-th order symmetric differential operator and McLeod's conjecture”, Proc. Roy. Soc. Edinburgh Sect. A, 90:3–4 (1981), 209–236 | MR | Zbl

[8] R. B. Paris, A. D. Wood, Asymptotics of high order differential equations, Pitman Res. Notes Math. Ser., 129, Longman, Harlow; Wiley, New York, 1986 | MR | Zbl

[9] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[10] Yu. V. Orochko, “Indeksy defekta odnochlennogo simmetricheskogo differentsialnogo operatora chetnogo poryadka, vyrozhdayuschegosya vnutri intervala”, Matem. sb., 196:5 (2005), 53–82 | MR | Zbl

[11] K. A. Mirzoev, “O teoreme Orlova ob indekse defekta differentsialnykh operatorov”, Dokl. RAN, 380:5 (2001), 591–595 | MR | Zbl

[12] F. R. Gantmakher, Teoriya matrits, Gostekhizdat, M., 1953

[13] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[14] E. L. Ains, Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939