Weak and strong continuity of representations of topologically pseudocomplete groups in locally convex spaces
Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 453-473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Weak and strong continuity conditions for representations of topological groups in locally convex spaces are considered. In particular, weak continuity conditions of reducible locally equicontinuous representations of a topological group in a locally convex space that define weakly continuous representations in an invariant subspace and in the quotient space by this invariant subspace are investigated. These conditions help one to prove the weak continuity of averages and approximations related to weakly continuous locally equicontinuous quasirepresentations of amenable topological groups. Strong continuity conditions for a representation approximating a quasirepresentation of this kind are related to conditions of automatic strong continuity of weakly continuous representations, and fail to hold for some groups, spaces, and representations. In this connection, strong continuity conditions for weakly continuous representations in quasicomplete barrelled locally convex spaces are indicated for a broad class of topologically pseudocomplete groups (which includes the Čech complete groups and the locally pseudocompact groups). Several examples are discussed, in particular, ones relating to the construction of $\Sigma$-products with distinguished subgroups. Bibliography: 50 titles.
@article{SM_2006_197_3_a7,
     author = {A. I. Shtern},
     title = {Weak and strong continuity of representations of topologically pseudocomplete groups in locally convex spaces},
     journal = {Sbornik. Mathematics},
     pages = {453--473},
     year = {2006},
     volume = {197},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2006_197_3_a7/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Weak and strong continuity of representations of topologically pseudocomplete groups in locally convex spaces
JO  - Sbornik. Mathematics
PY  - 2006
SP  - 453
EP  - 473
VL  - 197
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2006_197_3_a7/
LA  - en
ID  - SM_2006_197_3_a7
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Weak and strong continuity of representations of topologically pseudocomplete groups in locally convex spaces
%J Sbornik. Mathematics
%D 2006
%P 453-473
%V 197
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2006_197_3_a7/
%G en
%F SM_2006_197_3_a7
A. I. Shtern. Weak and strong continuity of representations of topologically pseudocomplete groups in locally convex spaces. Sbornik. Mathematics, Tome 197 (2006) no. 3, pp. 453-473. http://geodesic.mathdoc.fr/item/SM_2006_197_3_a7/

[1] L. G. Brown, “Continuity of actions of groups and semigroups on Banach spaces”, J. London Math. Soc. (2), 62:1 (2000), 107–116 | DOI | MR | Zbl

[2] K. Thomsen, “Asymptotic homomorphisms and equivariant $KK$-theory”, J. Funct. Anal., 163:2 (1999), 324–343 | DOI | MR | Zbl

[3] K. Thomsen, “Nonstable $K$-theory for operator algebras”, $K$-Theory, 4:3 (1991), 245–267 | DOI | MR | Zbl

[4] J. Cuntz, “Bivariante $K$-Theorie für lokalkonvexe Algebren und der Chern–Connes-Charakter”, Doc. Math., 2 (1997), 139–182 | MR | Zbl

[5] J. Cuntz, Bivariant $K$-theory and the Weyl algebra, arXiv: math.KT/0401295 | MR

[6] E. J. Beggs, Pointwise bounded asymptotic morphisms and Thomsen's non-stable $k$-theory, arXiv: math.OA/0201051

[7] A. I. Shtern, “Representations of topological groups in locally convex spaces: continuity properties and weak almost periodicity”, Russian J. Math. Phys., 11:1 (2004), 81–108 | MR | Zbl

[8] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[9] W. W. Comfort, K. A. Ross, “Pseudocompactness and uniform continuity in topological groups”, Pacific J. Math., 16:3 (1966), 483–496 | MR | Zbl

[10] W. W. Comfort, F. J. Trigos-Arrieta, “Locally pseudocompact topological groups”, Topology Appl., 62:3 (1995), 263–280 | DOI | MR | Zbl

[11] D. Dikranjan, D. Shakhmatov, Algebraic structure of pseudocompact groups, Mem. Amer. Math. Soc., 633, Amer. Math. Soc., Providence, RI, 1998 | MR

[12] S. A. Gaal, Linear analysis and representation theory, Springer-Verlag, New York, 1973 | MR | Zbl

[13] M. A. Naimark, A. I. Štern [Shtern], Theory of group representations, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl

[14] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Reinhold Co., London, 1969 | MR | Zbl

[15] A. T.-M. Lau, “Amenability of semigroups”, The analytical and topological theory of semigroups, de Gruyter Exp. Math., 1, de Gruyter, Berlin, 1990, 313–334 | MR | Zbl

[16] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR

[17] M. M. Dei, Normirovannye lineinye prostranstva, Nauka, M., 1961

[18] C. C. Moore, “Extensions and low dimensional cohomology theory of locally compact groups. I, II”, Trans. Amer. Math. Soc., 113 (1964), 40–63; 64–86 | DOI | MR | Zbl

[19] M. Krein, V. Šmulian, “On regularly convex sets in the space conjugate to a Banach space”, Ann. of Math. (2), 41 (1940), 556–583 | DOI | MR | Zbl

[20] J. von Neumann, “On complete topological spaces”, Trans. Amer. Math. Soc., 37 (1935), 1–20 | DOI | MR | Zbl

[21] K. de Leeuw, I. Glicksberg, “The decomposition of certain group representations”, J. Anal. Math., 15 (1965), 135–192 | DOI | MR | Zbl

[22] B. E. Johnson, Cohomology of Banach algebras, Mem. Amer. Math. Soc., 127, Amer. Math. Soc., Providence, RI, 1972 | MR

[23] Yu. I. Lyubich, Vvedenie v teoriyu banakhovykh predstavlenii grupp, Vischa shkola, Kharkov, 1985 | MR | Zbl

[24] M. G. Megrelishvili, “Operator topologies and reflexive representability”, Nuclear groups and Lie groups, Selected lectures of the workshop (Madrid, Spain, September 1999), Res. Exp. Math., 24, eds. E. Martin Peinador, J. Nunez Garcia, Heldermann, Lemgo, 2001, 197–208 | MR | Zbl

[25] M. G. Megrelishvili, “Fragmentability and continuity of semigroup actions”, Semigroup Forum, 57:1 (1998), 101–126 | DOI | MR | Zbl

[26] L. Egghe, “On the Radon–Nikodym property, and related topics in locally convex spaces”, Lecture Notes in Phys., 77, 1978, 77–90 | MR | Zbl

[27] R. C. James, “KMP, RNP, and PCP for Banach spaces”, Banach space theory (Iowa City, IA, 1987), Contemp. Math., 85, Amer. Math. Soc., Providence, RI, 1989, 281–317 | MR

[28] I. Namioka, “Radon–Nikodym compact spaces and fragmentability”, Mathematika, 34 (1987), 258–281 | MR | Zbl

[29] A. I. Shtern, “Kriterii slaboi i silnoi nepreryvnosti predstavlenii topologicheskikh grupp v banakhovykh prostranstvakh”, Matem. sb., 193:9 (2002), 139–156 | MR | Zbl

[30] A. I. Shtern, “Zhestkost i approksimatsiya kvazipredstavlenii amenabelnykh grupp”, Matem. zametki, 65:6 (1999), 908–920 | MR | Zbl

[31] S. Antonyan, M. Sanchis, “Extension of locally pseudocompact group actions”, Ann. Mat. Pura Appl. (4), 181 (2002), 239–246 | DOI | MR | Zbl

[32] A. V. Arhangel'skii, “Moscow spaces, Pestov–Tkačenko problem, and $C$-embeddings”, Comment. Math. Univ. Carolin., 41:3 (2000), 585–595 | MR | Zbl

[33] M. Sanchis, “Continuous functions on locally pseudocompact groups”, Topology Appl., 86:1 (1998), 5–23 | DOI | MR | Zbl

[34] L. G. Brown, “Topologically complete groups”, Proc. Amer. Math. Soc., 35:2 (1972), 593–600 | DOI | MR | Zbl

[35] B. A. Pasynkov, “Pochti metrizuemye topologicheskie gruppy”, Dokl. AN SSSR, 161:2 (1965), 281–284 | MR | Zbl

[36] E. Khyuitt, K. A. Ross, Abstraktnyi garmonicheskii analiz, t. I, Mir, M., 1975

[37] M. Valdivia, “Some new results on weak compactness”, J. Funct. Anal., 24:1 (1977), 1–10 | DOI | MR | Zbl

[38] A. Grothendieck, “Critères de compacité dans les espaces fonctionnels généraux”, Amer. J. Math., 74 (1952), 168–186 | DOI | MR | Zbl

[39] S. Banach, Théorie des opérations linéaires, Subwencji Funduszu Narodowej, Warszawa, 1932 | Zbl

[40] K.-H. Neeb, “On a theorem of S. Banach”, J. Lie Theory, 7:2 (1997), 293–300 | MR | Zbl

[41] K.-H. Neeb, D. Pickrell, “Supplements to the papers entitled: “On a theorem of S. Banach” and "The separable representations of $U(H)$"”, J. Lie Theory, 10:1 (2000), 107–109 | MR | Zbl

[42] V. Pestov, Review of [40], MR1473172

[43] S. S. Khurana, “Pointwise compactness and measurability”, Pacific J. Math., 83:2 (1979), 387–391 | MR | Zbl

[44] S. Teleman, “Sur la réprésentation linéaire des groupes topologiques”, Ann. Sci. École Norm. Sup. (4), 74 (1957), 319–339 | MR | Zbl

[45] N. J. Young, “Periodicity of functionals and representations of normed algebras on reflexive spaces”, Proc. Edinburgh Math. Soc. (2), 20:2 (1976/77), 99–120 | DOI | MR | Zbl

[46] W. J. Davis, T. Figiel, W. B. Johnson, A. Pelczynski, “Factoring weakly compact operators”, J. Funct. Anal., 17 (1974), 311–327 | DOI | MR | Zbl

[47] A. I. Shtern, “Compact semitopological semigroups and reflexive representability of topological groups”, Russian J. Math. Phys., 2:1 (1994), 131–132 | MR | Zbl

[48] M. Megrelishvili, “Generalized Heisenberg groups and Shtern's question”, Georgian Math. J., 11:4 (2004), 775–782 | MR | Zbl

[49] W. Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Math., 1466, Springer-Verlag, Berlin, 1991 | MR | Zbl

[50] A. I. Shtern, “Topologicheskie gruppy s konechnymi gruppovymi algebrami fon Neimana tipa I”, Matem. sb., 196:3 (2005), 143–160 | MR | Zbl